Clinical And Magnetic Resonance Imaging Predictors Of Disease Progression In Multiple Sclerosis: A Nine-Year Follow-Up Study(491 views)(PDF restricted237 views) Lavorgna L, Bonavita S, Ippolito D, Lanzillo R, Salemi G, Patti F, Valentino P, Coniglio G, Buccafusca M, Paolicelli D, D'Ambrosio A, Bresciamorra V, Savettieri G, Zappia M, Alfano B, Gallo A, Simone I, Tedeschi G
Mult Scler (ISSN: 1352-4585, 1477-0970), 2014 Feb; 20(2): 220-226.
Second University of Naples, II Clinic of Neurology, Piazza Miraglia, 2, 80138-Naples, Italy
Neurological Institute for Diagnosis and Care Hermitage Capodimonte, Naples, Italy
Department of Neurological Sciences, University Federico II, Naples, Italy
Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Italy
Department DANA GF Ingrassia, Section of Neurosciences, University of Catania, Italy
Department of Medical Sciences, Institute of Neurology, University Magna Graecia, Italy
Biostructure and Bioimaging Institute, National Research Council, Italy
References: Lassmann, H., Bruck, W., Lucchinetti, C. F., The immunopathology of multiple sclerosis: An overview (2007) Brain Pathol, 17, pp. 210-21
Weinshenker, B. G., The natural history of multiple sclerosis (1995) Neurol Clin, 13, pp. 119-146
Confavreux, C., Vukusic, S., Natural history of multiple sclerosis: A unifying concept (2006) Brain, 129, pp. 606-616
Kurtzke, J. F., Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS) (1983) Neurology, 33, pp. 1444-1452
Confavreux, C., Aimard, G., Devic, M., Course and prognosis of multiple sclerosis assessed by the computerized data processing of 349 patients (1980) Brain, 103, pp. 281-300
Runmarker, B., Andersen, O., Prognostic factors in a multiple sclerosis incidence cohort with twenty-five years of follow-up (1993) Brain, 116, pp. 117-134
Pittock, S. J., McClelland, R. L., Mayr, W. T., Clinical implications of benign multiple sclerosis: A 20-year population-based follow-up study (2004) Ann Neurol, 56, pp. 303-306
Pittock, S. J., Mayr, W. T., McClelland, R. L., Change in MS-related disability in a population-based cohort: A 10-year follow-up study (2004) Neurology, 62, pp. 51-59
Renoux, C., Natural history of multiple sclerosis: Long-term prognostic factors (2011) Neurol Clin, 29, pp. 293-308
Kappos, L., Moeri, D., Radue, E. W., Predictive value of gadolinium-enhanced magnetic resonance imaging for relapse rate and changes in disability or impairment in multiple sclerosis: A meta-analysis (1999) Lancet, 353, pp. 964-969
Fisniku, L., Brex, P., Altmann, D., Disability and T2 MRI lesions: A 20-year follow-up of patients with relapse onset of multiple sclerosis (2008) Brain, 131, pp. 808-817
Di Filippo, M., Anderson, V. M., Altmann, D. R., Brain atrophy and lesion load measures over 1 year relate to clinical status after 6 years in patients with clinically isolated syndromes (2010) J Neurol Neurosurg Psychiatry, 81, pp. 204-208
Sailer, M., Losseff, N. A., Wang, L., T1 lesion load and cerebral atrophy as a marker for clinical progression in patients with multiple sclerosis. A prospective 18 months follow-up study (2001) Eur J Neurol, 8, pp. 37-42
Rudick, R. A., Lee, J. C., Simon, J., Significance of T2 lesions in multiple sclerosis: A 13-year longitudinal study (2006) Ann Neurol, 60, pp. 236-242
Tiberio, M., Chard, D. T., Altman, D. P., Gray and white matter volume changes in early RRMS. A 2-year longitudinal study (2005) Neurology, 64, pp. 1001-1007
Fisher, E., Rudick, R. A., Simon, J. H., Eight-year follow-up study of brain atrophy in patients with MS (2002) Neurology, 59, pp. 1412-1420
Fisniku, L., Chard, D. T., Jackson, J. S., Gray matter atrophy is related to long-term disability in multiple sclerosis (2008) Ann Neurol, 64, pp. 247-254
Tedeschi, G., Lavorgna, L., Russo, P., Brain atrophy and lesion load in a large population of patients with multiple sclerosis (2005) Neurology, 65, pp. 280-285
Horakova, D., Dwyer, M. G., Havrdova, E., Gray matter atrophy and disability progression in patients with early relapsing-remitting multiple sclerosis: A 5-year longitudinal study (2009) J Neurol Sci, 282, pp. 112-119
Vaneckova, M., Seidl, Z., Krasensky, J., Patients' stratification and correlation of brain magnetic resonance imaging parameters with disability progression in multiple sclerosis (2009) Eur Neurol, 6, pp. 278-284
Alfano, B., Brunetti, A., Covelli, E. M., Unsupervised, automated segmentation of the normal brain using a multispectral relaxometric magnetic resonance approach (1997) Magn Reson Med, 37, pp. 84-93
Freedman, M. S., Selchen, D., Arnold, D. L., Treatment optimization in MS: Canadian MS Working Group updated recommendations (2013) Can J Neurol Sci, 40, pp. 307-323
Li, D. K., Held, U., Petkau, J., MRI T2 lesion burden in multiple sclerosis: A plateauing relationship with clinical disability (2006) Neurology, 66, pp. 1384-1389
Filippi, M., Paty, D. W., Kappos, L., Correlations between changes in disability and T2-weighted brain MRI activity in multiple sclerosis: A follow-up study (2005) Neurology, 45, pp. 255-260
Truyen, L., Van Waesberghe, J. H., Van Walderveen, M. A., Accumulation of hypointense lesions ("black holes") on T1 spin-echo MRI correlates with disease progression in multiple sclerosis (1996) Neurology, 47, pp. 1469-1476
Koudriatseva, T., Thompson, A. J., Fiorelli, M., Gadolinium-enhanced MRI predicts clinical and MRI disease activity in relapsing-remitting multiple sclerosis (1997) J Neurol Neurosurg Psychiatry, 67, pp. 285-287
Roosendaal, S. D., Bendfeldt, K., Vrenken, H., Grey matter volume in a large cohort of MS patients: Relation to MRI parameters and disability (2011) Mult Scler, 17, pp. 1098-1106
Geurts, J. J., Calabrese, M., Fisher, E., Measurement and clinical effect of grey matter pathology in multiple sclerosis (2012) Lancet Neurol, 11, pp. 1082-1092
Mostert, J. P., Koch, M. W., Steen, C., T2 lesions and rate of progression of disability in multiple sclerosis (2010) Eur J Neurol, 17, pp. 1471-1475
Noseworthy, J. H., Vandervoort, M. K., Wong, C. J., Interrater variability with the Expanded Disability Status Scale (EDSS) and functional systems (FS) in a multiple sclerosis clinical trial (1990) Neurology, 40, pp. 971-975
Goodkin, D. E., Cookfair, D., Wende, K., Inter-intrarater scoring agreement using grades 1. 0 to 3 5 of the Kurtzke Expanded Disability Status Scale (EDSS) (1992) Neurology, 42, pp. 859-863
Weinshenker, B.G., The natural history of multiple sclerosis (1995) Neurol Clin, 13, pp. 119-146
Kurtzke, J.F., Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS) (1983) Neurology, 33, pp. 1444-1452
Pittock, S.J., McClelland, R.L., Mayr, W.T., Clinical implications of benign multiple sclerosis: A 20-year population-based follow-up study (2004) Ann Neurol, 56, pp. 303-306
Pittock, S.J., Mayr, W.T., McClelland, R.L., Change in MS-related disability in a population-based cohort: A 10-year follow-up study (2004) Neurology, 62, pp. 51-59
Rudick, R.A., Lee, J.C., Simon, J., Significance of T2 lesions in multiple sclerosis: A 13-year longitudinal study (2006) Ann Neurol, 60, pp. 236-242
Freedman, M.S., Selchen, D., Arnold, D.L., Treatment optimization in MS: Canadian MS Working Group updated recommendations (2013) Can J Neurol Sci, 40, pp. 307-323
Li, D.K., Held, U., Petkau, J., MRI T2 lesion burden in multiple sclerosis: A plateauing relationship with clinical disability (2006) Neurology, 66, pp. 1384-1389
Roosendaal, S.D., Bendfeldt, K., Vrenken, H., Grey matter volume in a large cohort of MS patients: Relation to MRI parameters and disability (2011) Mult Scler, 17, pp. 1098-1106
Geurts, J.J., Calabrese, M., Fisher, E., Measurement and clinical effect of grey matter pathology in multiple sclerosis (2012) Lancet Neurol, 11, pp. 1082-1092
Mostert, J.P., Koch, M.W., Steen, C., T2 lesions and rate of progression of disability in multiple sclerosis (2010) Eur J Neurol, 17, pp. 1471-1475
Noseworthy, J.H., Vandervoort, M.K., Wong, C.J., Interrater variability with the Expanded Disability Status Scale (EDSS) and functional systems (FS) in a multiple sclerosis clinical trial (1990) Neurology, 40, pp. 971-975
Goodkin, D.E., Cookfair, D., Wende, K., Inter-intrarater scoring agreement using grades 1.0 to 3 5 of the Kurtzke Expanded Disability Status Scale (EDSS) (1992) Neurology, 42, pp. 859-863
Clinical And Magnetic Resonance Imaging Predictors Of Disease Progression In Multiple Sclerosis: A Nine-Year Follow-Up Study
Objective: The objective of this paper is to identify clinical or magnetic resonance imaging (MRI) predictors of longterm clinical progression in a large cohort of multiple sclerosis (MS) patients. Methods: A total of 241 relapsing-remitting (RR) MS patients were included in a nine-year follow-up (FU) study. The reference MRIs were acquired at baseline (BL) as part of a multicenter, cross-sectional, clinical-MRI study. Volumetric MRI metrics were measured by a fully automated, operator-independent, multi-parametric segmentation method. Clinical progression was evaluated as defined by: conversion from RR to secondary progressive (SP) disease course; progression of Expanded Disability Status Scale (EDSS); achievement and time to reach EDSS 4. Results: We concluded that conversion from RR to SP (OR 0. 79; CI 0. 7-0. 9), progression of EDSS (OR 0. 85; CI 0. 77- 0. 93), achievement of EDSS 4 (OR 0. 8; CI 0. 7-0. 9), and time to reach EDSS 4 (HR 0. 88; CI 0. 82-0. 94) were all predicted by BL gray matter (GM) volume and, except for progression of EDSS, by BL EDSS (respectively: (OR 2. 88; CI 1. 9-4. 36), (OR 2. 7; CI 1. 7-4. 2), (HR 3. 86; CI 1. 94-7. 70)). Conclusions: BL GM volume and EDSS are the best long-term predictors of disease progression in RRMS patients with a relatively long and mild disease. 2013 The Author (s)
Clinical And Magnetic Resonance Imaging Predictors Of Disease Progression In Multiple Sclerosis: A Nine-Year Follow-Up Study
Antonini A, Vitale C, Barone P, Cilia R, Righini A, Bonuccelli U, Abbruzzese G, Ramat S, Petrone A, Quatrale R, Marconi R, Ceravolo R, Stefani A, Lopiano L, Zappia M, Capus L, Morgante L, Tamma F, Tinazzi M, Colosimo C, Guerra UP, Valzania F, Fagioli G, Distefano A, Bagnato A, Feggi L, Anna S, Maria Teresa Rosaria De Cr, Nobili F, Mazzuca N, Baldari S, Eleopra R, Bestetti A, Benti R, Varrone A, Volterrani D, Massa R, Stocchi F, Schillaci O, Dore F, Zibetti M, Castellano G, Battista SG, Giorgetti G * The relationship between cerebral vascular disease and parkinsonism: The VADO study(498 views) Parkinsonism Relat D (ISSN: 1353-8020, 1873-5126, 1873-5126electronic), 2012; 18(6): 775-780. Impact Factor:3.274 ViewExport to BibTeXExport to EndNote
Malvindi MA, Greco A, Conversano F, Figuerola A, Corti M, Bonora M, Lascialfari A, Doumari HA, Moscardini M, Cingolani R, Gigli G, Casciaro S, Pellegrino T, Ragusa A * MR Contrast Agents(292 views) Small Animal Imaging, 2011 Jul 8; 21(13): 2548-2555. Impact Factor:1.784 ViewExport to BibTeXExport to EndNote
Ntziachristos V, Cuénod CA, Fournier L, Balvay D, Pradel C, Siauve N, Clement O, Jouannot E, Lucidarme O, Vecchio SD, Salvatore M, Law B, Tung C-H, Jain RK, Fukumura D, Munn LL, Brown EB, Schellenberger E, Montet X, Weissleder R, Clerck ND, Postnov A * Tumor Imaging(350 views) Textbook Of In Vivo Imaging In Vertebrates (ISSN: 9780-4700), 2007 Jul 16; 1: 277-309. Impact Factor:1.148 ViewExport to BibTeXExport to EndNote
Hesse B, Tagil K, Cuocolo A, Anagnostopoulos C, Bardies M, Bax J, Bengel F, Busemann Sokole E, Davies G, Dondi M, Edenbrandt L, Franken P, Kjaer A, Knuuti J, Lassmann M, Ljungberg M, Marcassa C, Marie PY, Mckiddie F, O'connor M, Prvuolovich E, Underwood R * 3. 0 T perfusion MR imaging(730 views) Rivista Di Neuroradiologia (ISSN: 1120-9976), 2004; 17(6): 807-812. Impact Factor:0.023 ViewExport to BibTeXExport to EndNote