HER2-mediated anticancer drug delivery: strategies to prepare targeting ligands highly specific for the receptor(574 views) Calce E, Monfregola L, Saviano M, De Luca S
Curr Med Chem (ISSN: 0929-8673, 1875-533x, 1875-533xelectronic), 2015 May 20; 22(21): 2525-2538.
Institute of Biostructures and Bioimaging, National Research Council, 80138 Naples, Italy. stefania.deluca@cnr.it.,
Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, United States
Institute of Crystallography, National Research Council, Bari, Italy
Consiglio Nazionale delle Ricerche
References: Yarden, Y., Sliwkowski, M.X., Untangling the ERBB signalling network (2001) Nat. Rev. Mol. Cell. Biol., 2, pp. 127-13
Press, M.F., Cordon-Cardo, C., Slamon, D.J., Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues (1990) Oncogene, 5, pp. 953-962
Dawood, S., Broglio, K., Buzdar, A.U., Hortobagyi, G.N., Giordano, S.H., Prognosis of women with metastatic breast cancer by HER2 status and trastuzumab treatment: An institutional-based review (2010) J. Clin. Oncol., 28, pp. 92-98
Ross, J.S., Slodkowska, E.A., Symmans, W.F., Pusztai, L., Ravdin, P.M., Hortobagyi, G.N., The HER-2 receptor and breast cancer: Ten years of targeted anti-HER-2 therapy and personalized medicine (2009) Oncologist, 14, pp. 320-368
Lax, I., Burgess, W.H., Bellot, F., Ullrich, A., Schlessinger, J., Givol, D., Localization of a major receptor-binding domain for epidermal growth factor by affinity labeling (1988) Mol. Cell. Biol., 8, pp. 1831-1834
Pietras, R.J., Arboleda, J., Reese, D.M., Wongvipat, N., Pegram, M.D., Ramos, L., Gorman, C.M., Slamon, D.J., HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells (1995) Oncogene, 10, pp. 2435-2446
Garrett, T.P., McKern, N.M., Lou, M., Elleman, T.C., Adams, T.E., Lovrecz, G.O., Kofler, M., Ward, C.W., The crystal structure of a truncated ERBB2 ectodomain reveals an active conformation, poised to interact with other ERBB receptors (2003) Mol. Cell, 11, pp. 495-505
Neve, R.M., Lane, H.A., Hynes, N.E., The role of overexpressed HER2 intransformation (2001) Ann. Oncol., 12, pp. S9-S13
Slamon, D.J., Godolphin, W., Jones, L.A., Holt, J.A., Wong, S.G., Keith, D.E., Levin, W.J., Press, M.F., Studies of the HER-2/neu proto-ancogene in human breast and ovarian cancer (1989) Science, 244, pp. 707-712
Klapper, L.N., Kirschbaum, M.H., Sela, M., Yarden, Y., Biochemical and clinical implications of ERBB/HER signaling network of growth factor receptors (2000) Adv. Cancer Res., 77, pp. 25-79
Olayioye, M.A., Neve, R.M., Lane, H.A., Hynes, N.E., The ERBB sigaling network: Receptor heterodimerization in development and cancer (2000) EMBO J., 19, pp. 3159-3167
Niehans, G.A., Singleton, T.P., Dykoski, D., Kiang, D.T., Stability of HER-2/neu expression over time and at multiple metastatic sites (1993) J. Natl. Cancer Inst., 85, pp. 1230-1235
Cooke, T., What is HER2? (2000) Eur. J. Oncol. Nurs., 4, pp. 2-9
Spector, N., Xia, W., El-Hariry, I., Yarden, Y., Bacus, S., HER2 therapy. Small molecule HER-2 tyrosine kinase inhibitors (2007) Breast Cancer Res., 9, p. 205
Perez, E.A., Cortés, J., Gonzalez-Angulo, A.M., Bartlett, J.M.S., HER2 testing: Current status and future directions (2014) Cancer Treat. Rev., 40, pp. 276-284
Slamon, D.J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., Fleming, T., Norton, L., Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2 (2001) N. Engl. J. Med., 344, pp. 783-792
Smith, I., Procter, M., Gelberm, R.D., Guillaume, S., Feyereislova, A., Dowsett, M., Goldhirsch, A., Piccart-Gebhart, M.J., 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: A randomised controlled trial (2007) Lancet, 369, pp. 29-36
Ghayad, S.E., Cohen, P.A., Inhibitors of the PI3K/Akt/mTOR pathway: New hope for breast cancer patients (2010) Recent Pat. Anticancer Drug Discov., 5, pp. 29-57
Iqbal, N., Iqbal, N., Human Epidermal Growth Factor Receptor 2 (HER2) in cancers: Overexpression and therapeutic implications (2014) Mol. Biol. Int., 9p. , http://dx.doi.org/10.1155/2014/852748
Romond, E.H., Perez, E.A., Bryant, J., Suman, V.J., Geyer, C.E., Jr., Davidson, N.E., Tan-Chiu, E., Wolmark, N., Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer (2005) N. Engl. J. Med., 353, pp. 1673-1684
Adams, C.W., Allison, D.E., Flagella, K., Presta, L., Clarke, J., Dybdal, N., McKeever, K., Sliwkowski, M.X., Humanization of a recombinant monoclonal antibody to produce a therapeutic HER dimerization inhibitor, pertuzumab (2006) Cancer Immunol. Immunother., 55, pp. 717-727
Agus, D.B., Akita, R.W., Fox, W.D., Lewis, G.D., Higgins, B., Pisacane, P.I., Lofgren, J.A., Sliwkowski, M.X., Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth (2002) Cancer Cell, 2, pp. 127-137
Cai, Z., Zhang, G., Zhou, Z., Bembas, K., Drebin, J.A., Greene, M.I., Zhang, H., Differential binding patterns of monoclonal antibody 2C4 to the ErbB3-p185her2/neu and the EGFR-p185her2/neu complexes (2008) Oncogene, 27, pp. 3870-3874
Scheuer, W., Friess, T., Burtscher, H., Bossenmaier, B., Endl, J., Hasmann, M., Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models (2009) Cancer Res., 69, pp. 9330-9336
Brockhoff, G., Heckel, B., Schmidt-Bruecken, E., Plander, M., Hofstaedter, F., Vollmann, A., Diermeier, S., Differential impact of Cetuximab, Pertuzumab and Trastuzumab on BT474 and SK-BR-3 breast cancer cell proliferation (2007) Cell Prolif., 40, pp. 488-507
Blattler, W.A., Chari, R.V.J., (2012) Methods of Treatment Using Anti-ERBB Antibody-maytansinoid Conjugates, , U. S. Patent
Lambert, J.M., Chari, R.V.J., Ado-trastuzumab Emtansine (TDM1): An Antibody-Drug Conjugate (ADC) for HER2-positive breast cancer (2014) J. Med. Chem.
Gianolio, D.A., Rouleau, C., Bauta, W.E., Lovett, D., Cantrell, W.R., Jr., Recio, A.I., Wolstenholme-Hogg, P., Teicher, B.A., Targeting HER2-positive cancer with dolastatin 15 derivatives conjugated to trastuzumab, novel antibody-drug conjugates (2012) Cancer Chemother. Pharmacol., 70, pp. 439-449
Jia, L.T., Zhang, L.H., Yu, C.J., Zhao, J., Xu, Y.M., Gui, J.H., Jin, M., Yang, A.G., Specific tumoricidal activity of a secreted proapoptotic protein consisting of HER2 antibody and constitutively active caspase-3 (2003) Cancer Res., 63, pp. 3257-3262
Cho, H.M., Rosenblatt, J.D., Kang, Y.S., Iruela-Arispe, M.L., Morrison, S.L., Penichet, M.L., Kwon, Y.G., Shin, S.U., Enhanced inhibition of murine tumor and human breast tumor xenografts using targeted delivery of an antibody-endostatin fusion protein (2005) Mol. Cancer Ther., 4, pp. 956-967
Xia, W.Y., Lien, H.C., Wang, S.C., Pan, Y., Sahin, A., Kuo, Y.H., Chang, K.J., Hung, M.C., Expression of PEA3 and lack of correlation between PEA3 and HER-2/neu expression in breast cancer (2006) Breast Cancer Res. Treat., 98, pp. 295-301
Helguera, G., Rodriguez, J.A., Daniels, T.R., Penichet, M.L., Longterm immunity elicited by antibody-cytokine fusion proteins protects against sequential challenge with murine mammary and colon malignancies (2007) Cancer Immunol. Immunother., 56, pp. 1507-1512
Vivek, R., Thangam, R., NipunBabu, V., Rejeeth, C., Sivasubramanian, S., Gunasekaran, P., Muthuchelian, K., Kannan, S., Multifunctional HER2-antibody conjugated polymeric nanocarrier-based drug delivery system for multi-drug-resistant breast cancer therapy (2014) ACS Appl. Mater. Interfaces, 6, pp. 6469-6480
Hapuarachchige, S., Zhu, W., Kato, Y., Artemov, D., Bioorthogonal, two-component delivery systems based on antibody and drugutics (2014) Biomaterials, 35, pp. 2346-2354
Lu, H., Wang, D., Kazane, S., Javahishvili, T., Tian, F., Song, F., Sellers, A., Schultz, P.G., Site-specific antibody. Polymer conjugates for siRNA delivery (2013) J. Am. Chem. Soc., 135, pp. 13885-13891
Nord, K., Gunneriusson, E., Ringdahl, J., Stahl, S., Uhlen, M., Nygren, P.A., Binding proteins selected from combinatorial libraries of an a-helical bacterial receptor domain (1997) Nat. Biotechnol., 15, pp. 772-777
Ronnmark, J., Gronlund, H., Uhlen, M., Nygren, P.A., Human immunoglobulin A (IgA)-specific ligands from combinatorial engineering of protein A (2002) Eur. J. Biochem., 269, pp. 2647-2655
Steffen, A.C., Wikman, M., Tolmachev, V., Adams, G.P., Nilsson, F.Y., Stahl, S., Carlsson, J., In vitro characterization of a bivalent anti-HER-2 affibody with potential for radionuclide-based diagnostics (2005) Cancer Biother. Radiopharm., 20, pp. 239-248
Alexis, F., Basto, P., Levy-Nissenbaum, E., Radovic-Moreno, A.F., Zhang, L., Pridgen, E., Wang, A.Z., Farokhzad, O.C., HER-2-targeted nanoparticleaffibody bioconjugates for cancer therapy (2008) Chem. Med. Chem., 3, pp. 1839-1843
Park, B.W., Zhang, H.T., Wu, C., Berezov, A., Zhang, X., Dua, R., Wang, Q., Murali, R., Rationally designed anti-HER2/neu peptide mimetic disables P185HER2/neu tyrosine kinases in vitro and in vivo (2000) Nat. Biotechnol., 18, pp. 194-198
Shadidi, M., Sioud, M., Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells (2003) FASEB J., 17, pp. 256-258
Nakajima, H., Mizuta, N., Sakaguchi, K., Fujiwara, I., Yoshimori, A., Takahashi, S., Takasawa, R., Tanuma, S., Development of HER2-antagonistic peptides as novel antibreast cancer drugs by in silico methods (2008) Breast Cancer, 15, pp. 65-72
Fantin, V.R., Berardi, M.J., Babbe, H., Michelman, M.V., Manning, C.M., Leder, P., A bifunctional targeted peptide that blocks HER-2 tyrosine kinase and disables mitochondrial function in HER-2-positive carcinoma cells (2005) Cancer Res., 65, pp. 6891-6900
Afshar, S., Asai, T., Morrison, S.L., Humanized ADEPT comprised of an engineered human purine nucleoside phosphorylase and a tumor targeting peptide for treatment of cancer (2009) Mol. Cancer Ther., 8, pp. 185-193
Tan, M., Lan, K.H., Yao, J., Lu, C.H., Sun, M., Neal, C.L., Lu, J., Yu, D., Selective inhibition of ErbB2-overexpressing breast cancer in vivo by a novel TAT-based ErbB2-targeting signal transducers and activators of transcription 3-blocking peptide (2006) Cancer Res., 66, pp. 3764-3772
Javadpour, M.M., Juban, M.M., Lo, W.C., Bishop, S.M., Alberty, J.B., Cowell, S.M., Becker, C.L., McLaughlin, M.L., De novo antimicrobial peptides with low mammalian cell toxicity (1996) J. Med. Chem., 39, pp. 3107-3713
Ellerby, H.M., Martin, S.J., Ellerby, L.M., Naiem, S.S., Rabizadeh, S., Salvesen, G.S., Casiano, C.A., Bredesen, D.E., Establishment of a cell-free system of neuronal apoptosis: Comparison of premitochondrial, mitochondrial, and postmitochondrial phases (1997) J. Neurosci., 17, pp. 6165-6178
Del Rio, G., Castro-Obregon, S., Rao, R., Ellerby, H.M., Bredesen, D.E., APAP, a sequence-pattern recognition approach identifies substance P as a potential apoptotic peptide (2001) FEBS Lett., 494, pp. 213-219
Fernandes, A., Hamburger, A.W., Gerwin, B.I., ERBB-2 kinase is required for constitutive stat 3 activation in malignant human lung epithelial cells (1999) Int. J. Cancer, 83, pp. 564-570
Ren, Z., Schaefer, T.S., ERBB-2activates Stat3 alpha in a Src- and JAK2-dependent manner (2002) J. Biol. Chem., 277, pp. 38486-38493
Olayioye, M.A., Beuvink, I., Horsch, K., Daly, J.M., Hynes, N.E., ERBB receptor-induced activation of stat transcription factors is mediated by src tyrosine kinases (1999) J. Biol. Chem., 274, pp. 17209-17218
Turkson, J., Ryan, D., Kim, J.S., Zhang, Y., Chen, Z., Haura, E., Laudano, A., Jove, R., Phosphotyrosyl peptides block Stat3-mediated DNA binding activity, gene regulation, and cell transformation (2001) J. Biol. Chem., 276, pp. 45443-45455
Landon, L.A., Deutscher, S.L., Combinatorial discovery of tumor targeting peptides using phage display (2003) J. Cell Biochem., 90, pp. 509-517
Cho, H.S., Mason, K., Ramyar, K.X., Stanley, A.M., Gabelli, S.B., Denney, D.W., Leahy, D.J., Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab (2003) Nature, 421, pp. 756-760
Monfregola, L., Vitale, R.M., Amodeo, P., De Luca, S., A SPR strategy for high-throughput ligand screenings based on synthetic peptides mimicking a selected subdomain of the target protein: A proof of concept on HER2 receptor (2009) Bioorg. Med. Chem., 17, pp. 7015-7020
Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.J., SCOP: A structural classification of proteins database for the investigation of sequences and structures (1995) Mol. Biol., 247, p. 536
Calce, E., Monfregola, L., Sandomenico, A., Saviano, M., De Luca, S., Fluorescence study for selecting specific ligands toward HER2 receptor: An example of receptor fragment approach (2013) Eur. J. Med. Chem., 61, pp. 116-121
Calce, E., Sandomenico, A., Saviano, M., Ruvo, M., De Luca, S., Cysteine co-oxidation process driven by native peptide folding: An example on HER2 receptor model system (2014) Amino Acids, 46, pp. 1197-1206
Rabanal, F., DeGrado, W.F., Dutton, P.L., Use of 2, 2'-dithiobis (5-nitropyridine) for the heterodimerization of cysteine-containing peptides.introduction of the 5-nitro-2-pyridinesulfenyl group (1996) Tetrahedron Lett., 37, pp. 1347-1350
Hahnefeld, C., Drewianka, S., Herberg, F.W., Determination of kinetic data using surface plasmon resonance biosensors (2004) Methods Mol. Med., 94, pp. 299-320
Rich, R.L., Myszka, D.G., Survey of the year 2003 commercial optical biosensor literature (2005) J. Mol. Recognit., 18, pp. 1-39
Schuck, P., Minton, A.P., Analysis of mass transport-limited binding kinetics in evanescent wave biosensors (1996) Anal. Biochem., 240, pp. 262-272
Wu, S.J., Chaiken, I., Biosensor analysis of receptor-ligand interaction (2004) Methods Mol. Biol., 249, pp. 93-110
HER2-mediated anticancer drug delivery: strategies to prepare targeting ligands highly specific for the receptor