Institute of Biostructures and Bioimaging, CNR and CIRPeB, University of Naples Federico II, Napoli, Italy., Dept. of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Napoli, Italy., Institute of Biostructures and Bioimaging, CNR and CIRPeB, University of Naples Federico II, Napoli, Italy Dept. of Pharmacy, University of Naples Federico II, Napoli, Italy., Kedrion SpA, Lucca, Italy., Institute of Biostructures and Bioimaging, CNR and CIRPeB, University of Naples Federico II, Napoli, Italy Second University of Naples., Medical Research Council - University of Glasgow Centre for Virus Research, Glasgow, UK., Medical Research Council - University of Glasgow Centre for Virus Research, Glasgow, UK. menotti.ruvo@unina.it arvind.patel@glasgow.ac.uk., Institute of Biostructures and Bioimaging, CNR and CIRPeB, University of Naples Federico II, Napoli, Italy menotti.ruvo@unina.it arvind.patel@glasgow.ac.uk.,
Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
Department of Pharmacy, University of Naples Federico II, Naples, Italy
Bioker Multimedica, Naples, Italy
Kedrion SpA, Lucca, Italy.
Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom.
References: Mohd Hanafiah, K., Groeger, J., Flaxman, A.D., Wiersma, S.T., Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence (2013) Hepatology, 57, pp. 1333-1342. , http://dx.doi.org/10.1002/hep.2614
Galossi, A., Guarisco, R., Bellis, L., Puoti, C., Extrahepatic manifestations of chronic HCV infection (2007) J Gastrointestin Liver Dis, 16, pp. 65-73
Simmonds, P., Bukh, J., Combet, C., Deléage, G., Enomoto, N., Feinstone, S., Halfon, P., Widell, A., Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes (2005) Hepatology, 42, pp. 962-973. , http://dx.doi.org/10.1002/hep.20819
Smith, D.B., Bukh, J., Kuiken, C., Muerhoff, A.S., Rice, C.M., Stapleton, J.T., Simmonds, P., Expanded classification of hepatitis C virus into 7 genotypes and 67 subtypes: updated criteria and genotype assignment web resource (2014) Hepatology, 59, pp. 318-327. , http://dx.doi.org/10.1002/hep.26744
Belousova, V., Abd-Rabou, A.A., Mousa, S.A., Recent advances and future directions in the management of hepatitis C infections (2015) Pharmacol Ther, 145, pp. 92-102. , http://dx.doi.org/10.1016/j.pharmthera.2014.09.002
Lawitz, E., Sulkowski, M.S., Ghalib, R., Rodriguez-Torres, M., Younossi, Z.Y., Corregidor, A., DeJesus, E., Jacobson, I.M., Simeprevir plus sofosbuvir, with or without ribavirin, to treat chronic infection with hepatitis C virus genotype 1 in nonresponders to pegylated interferon and ribavirin and treatment-naive patients: the COSMOS randomised study (2014) Lancet, 384, pp. 1756-1765. , http://dx.doi.org/10.1016/S0140-6736(14)61036-9
Koretz, R.L., ACP journal club: review: telaprevir, boceprevir, simeprevir, or sofosbuvir improves response in HCV type 1 (2014) Ann Intern Med, 161, p. JC11. , http://dx.doi.org/10.7326/0003-4819-161-10-201411180-02011
Lindenbach, B.D., Rice, M.C., The ins and outs of hepatitis C virus entry and assembly (2013) Nat Rev Microbiol, 11, pp. 688-700. , http://dx.doi.org/10.1038/nrmicro3098
Goffard, A., Dubuisson, J., Glycosylation of hepatitis C virus envelope proteins (2003) Biochimie, 85, pp. 295-301. , http://dx.doi.org/10.1016/S0300-9084(03)00004-X
Pileri, P., Uematsu, Y., Campagnoli, S., Galli, G., Falugi, F., Petracca, R., Weiner, A.J., Abrignani, S., Binding of hepatitis C virus to CD81 (1998) Science, 282, pp. 938-941. , http://dx.doi.org/10.1126/science.282.5390.938
Scarselli, E., Ansuini, H., Cerino, R., Roccasecca, R.M., Acali, S., Filocamo, G., Traboni, C., Vitelli, A., The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus (2002) EMBO J, 21, pp. 5017-5025. , http://dx.doi.org/10.1093/emboj/cdf529
Owsianka, A.M., Timms, J.M., Tarr, A.W., Brown, R.J., Hickling, T.P., Szwejk, A., Bienkowska-Szewczyk, K., Ball, J.K., Identification of conserved residues in the E2 envelope glycoprotein of the hepatitis C virus that are critical for CD81 binding (2006) J Virol, 80, pp. 8695-8704. , http://dx.doi.org/10.1128/JVI.00271-06
Drummer, H.E., Boo, I., Maerz, A.L., Poumbourios, P., A conserved Gly436-Trp-Leu-Ala-Gly-Leu-Phe-Tyr motif in hepatitis C virus glycoprotein E2 is a determinant of CD81 binding and viral entry (2006) J Virol, 80, pp. 7844-7853. , http://dx.doi.org/10.1128/JVI.00029-06
Owsianka, A., Tarr, A.W., Juttla, V.S., Lavillette, D., Bartosch, B., Cosset, F.L., Ball, J.K., Patel, A.H., Monoclonal antibody AP33 defines a broadly neutralizing epitope on the hepatitis C virus E2 envelope glycoprotein (2005) J Virol, 79, pp. 11095-11104. , http://dx.doi.org/10.1128/JVI.79.17.11095-11104.2005
Flint, M., Maidens, C.M., Loomis-Price, L.D., Shotton, C., Dubuisson, J., Monk, P., Higginbottom, A., McKeating, J.A., Characterization of hepatitis C virus E2 glycoprotein interaction with a putative cellular receptor, CD81 (1999) J Virol, 73, pp. 6235-6244
Broering, T.J., Garrity, K.A., Boatright, N.K., Sloan, S.E., Sandor, F., Thomas, W.D., Jr., Szabo, G., Babcock, G.J., Identification and characterization of broadly neutralizing human monoclonal antibodies directed against the E2 envelope glycoprotein of hepatitis C virus (2009) J Virol, 83, pp. 12473-12482. , http://dx.doi.org/10.1128/JVI.01138-09
Keck, Z., Wang, W., Wang, Y., Lau, P., Carlsen, T.H., Prentoe, J., Xia, J., Foung, S.K., Cooperativity in virus neutralization by human monoclonal antibodies to two adjacent regions located at the amino terminus of hepatitis C virus E2 glycoprotein (2013) J Virol, 87, pp. 37-51. , http://dx.doi.org/10.1128/JVI.01941-12
Pantua, H., Diao, J., Ultsch, M., Hazen, M., Mathieu, M., McCutcheon, K., Takeda, K., Kapadia, S.B., Glycan shifting on hepatitis C virus (HCV) E2 glycoprotein is a mechanism for escape from broadly neutralizing antibodies (2013) J Mol Biol, 425, pp. 1899-1914. , http://dx.doi.org/10.1016/j.jmb.2013.02.025
Kong, L., Jackson, K.N., Wilson, I., Law, M., Capitalizing on knowledge of hepatitis C virus neutralizing epitopes for rational vaccine design (2015) Curr Opin Virol, 11, pp. 148-157. , http://dx.doi.org/10.1016/j.coviro.2015.04.001
Zhang, P., Zhong, L., Struble, E.B., Watanabe, H., Kachko, A., Mihalik, K., Virata-Theimer, M.L., Major, M., Depletion of interfering antibodies in chronic hepatitisCpatients and vaccinated chimpanzees reveals broad cross-genotype neutralizing activity (2009) Proc Natl Acad Sci U S A, 106, pp. 7537-7541. , http://dx.doi.org/10.1073/pnas.0902749106
Keck, Z.Y., Xia, J., Wang, Y., Wang, W., Krey, T., Prentoe, J., Carlsen, T., Foung, S.K., Human monoclonal antibodies to a novel cluster of conformational epitopes on HCV E2 with resistance to neutralization escape in a genotype 2a isolate (2012) PLoS Pathog, 8. , http://dx.doi.org/10.1371/journal.ppat.1002653
Johansson, D.X., Voisset, C., Tarr, A.W., Aung, M., Ball, J.K., Dubuisson, J., Persson, M.A., Human combinatorial libraries yield rare antibodies that broadly neutralize hepatitis C virus (2007) Proc Natl Acad Sci U S A, 104, pp. 16269-16274. , http://dx.doi.org/10.1073/pnas.0705522104
Ball, J.K., Tarr, A.W., McKeating, J.A., The past, present and future of neutralizing antibodies for hepatitis C virus (2014) Antiviral Res, 105, pp. 100-111. , http://dx.doi.org/10.1016/j.antiviral.2014.02.013
Potter, J.A., Owsianka, A.M., Jeffery, N., Matthews, D.J., Keck, Z.Y., Lau, P., Foung, S.K., Patel, A.H., Toward a hepatitis C virus vaccine: the structural basis of hepatitis C virus neutralization by AP33, a broadly neutralizing antibody (2012) J Virol, 86, pp. 12923-12932. , http://dx.doi.org/10.1128/JVI.02052-12
Kong, L., Giang, E., Nieusma, T., Robbins, J.B., Deller, M.C., Stanfield, R.L., Wilson, I.A., Law, M., Structure of hepatitis C virus envelope glycoprotein E2 antigenic site 412 to 423 in complex with antibody AP33 (2012) J Virol, 86, pp. 13085-13088. , http://dx.doi.org/10.1128/JVI.01939-12
Khan, A.G., Whidby, J., Miller, M.T., Scarborough, H., Zatorski, A.V., Cygan, A., Price, A.A., Marcotrigiano, J., Structure of the core ectodomain of the hepatitis C virus envelope glycoprotein 2 (2014) Nature, 509, pp. 381-384. , http://dx.doi.org/10.1038/nature13117
Tarr, A.W., Owsianka, A.M., Timms, J.M., McClure, C.P., Brown, R.J., Hickling, T.P., Pietschmann, T., Ball, J.K., Characterization of the hepatitis C virus E2 epitope defined by the broadly neutralizing monoclonal antibody AP33 (2006) Hepatology, 43, pp. 592-601. , http://dx.doi.org/10.1002/hep.21088
Clayton, R.F., Owsianka, A., Aitken, J., Graham, S., Bhella, D., Patel, A.H., Analysis of antigenicity and topology of E2 glycoprotein present on recombinant hepatitis C virus-like particles (2002) J Virol, 76, pp. 7672-7682. , http://dx.doi.org/10.1128/JVI.76.15.7672-7682.2002
Fields, G.B., Noble, R.L., Solid phase peptide synthesis utilizing 9 fluorenylmethoxycarbonyl amino acids (1990) Int J Pept Protein Res, 35, pp. 161-214
Verdoliva, A., Marasco, D., De Capua, A., Saporito, A., Bellofiore, P., Manfredi, V., Fattorusso, R., Ruvo, M., A new ligand for immunoglobulin G subdomains by screening of a synthetic peptide library (2005) Chembiochem, 6, pp. 1242-1253. , http://dx.doi.org/10.1002/cbic.200400368
Saporito, A., Marasco, D., Chambery, A., Botti, P., Monti, S.M., Pedone, C., Ruvo, M., The chemical synthesis of the GstI protein by NCL on a X-Met site (2006) Biopolymers, 83, pp. 508-518. , http://dx.doi.org/10.1002/bip.20582
Carter, J.M., Techniques for conjugation of synthetic peptides to carrier molecules (1994) Methods Mol Biol, 36, pp. 155-191
Kohler, G., Milstein, C., Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion (1976) Eur J Immunol, 6, pp. 511-519. , http://dx.doi.org/10.1002/eji.1830060713
Focà, A., Sanguigno, L., Focà, G., Strizzi, L., Iannitti, R., Palumbo, R., Hendrix, M.J.C., Sandomenico, A., New anti-nodal monoclonal antibodies targeting the nodal pre-helix loop involved in Cripto-1 binding (2015) Int J Mol Sci, 16, pp. 21342-21362. , http://dx.doi.org/10.3390/ijms160921342
Patel, A.H., Wood, J., Penin, F., Dubuisson, J., McKeating, J.A., Construction and characterization of chimeric hepatitis C virus E2 glycoproteins: analysis of regions critical for glycoprotein aggregation and CD81 binding (2000) J Gen Virol, 81, pp. 2873-2883. , http://dx.doi.org/10.1099/0022-1317-81-12-2873
Wakita, T., Pietschmann, T., Kato, T., Date, T., Miyamoto, M., Zhao, Z., Murthy, K., Liang, T.J., Production of infectious hepatitis C virus in tissue culture from a cloned viral genome (2005) Nat Med, 11, pp. 791-796. , http://dx.doi.org/10.1038/nm1268
Keck, Z.-Y., Angus, A.G.N., Wang, W., Lau, L., Wang, Y., Gatherer, D., Patel, A., Foung, S.K.H., Non-random escape pathways from a broadly neutralizing human monoclonal antibody map to a highly conserved region on the hepatitis C virus E2 glycoprotein encompassing amino acids 412-423 (2014) PLoS Pathog, 10. , http://dx.doi.org/10.1371/journal.ppat.1004297
Iro, M., Witteveldt, J., Angus, A.G., Woerz, I., Kaul, A., Bartenschlager, R., Patel, A.H., A reporter cell line for rapid and sensitive evaluation of hepatitis C virus infectivity and replication (2009) Antiviral Res, 83, pp. 148-155. , http://dx.doi.org/10.1016/j.antiviral.2009.04.007
Jankarik, J., Kim, S., Sparse matrix sampling: a screening method for crystallization of proteins (1991) J Appl Crystallogr, 24, pp. 409-411. , http://dx.doi.org/10.1107/S0021889891004430
Otwinowski, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol, 276, pp. 307-326. , http://dx.doi.org/10.1016/S0076-6879(97)76066-X
Morris, R.J., Perrakis, A., Lamzin, V.S., ARP/wARP's model-building algorithms. I. The main chain (2002) Acta CrystallogrDBiol Crystallogr, 58, pp. 968-975. , http://dx.doi.org/10.1107/S0907444902005462
Winn, M.D., Murshudov, G.N., Papiz, M.Z., Macromolecular TLS refinement in REFMAC at moderate resolutions (2003) Methods Enzymol, 374, pp. 300-321. , http://dx.doi.org/10.1016/S0076-6879(03)74014-2
Emsley, P., Cowtan, K., Coot: model-building tools for molecular graphics (2004) Acta Crystallogr D Biol Crystallogr, 60, pp. 2126-2132. , http://dx.doi.org/10.1107/S0907444904019158
Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J., GROMACS: fast, flexible, and free (2005) J Comput Chem, 26, pp. 1701-1718. , http://dx.doi.org/10.1002/jcc.20291
Stanfield, R.L., Zemla, A., Wilson, I.A., Rupp, B., Antibody elbow angles are influenced by their light chain class (2006) J Mol Biol, 357, pp. 1566-1574. , http://dx.doi.org/10.1016/j.jmb.2006.01.023
Chothia, C., Lesk, A.M., Tramontano, A., Levitt, M., Smith-Gill, S.J., Air, G., Sheriff, S., Poljak, R.J., Conformations of immunoglobulin hypervariable regions (1989) Nature, 342, pp. 877-883. , http://dx.doi.org/10.1038/342877a0
Shen, Y., Maupetit, J., Derreumaux, P., Tufféry, P., Improved PEPFOLD approach for peptide and miniprotein structure prediction (2014) J Chem Theor Comput, 10, pp. 4745-4758. , http://dx.doi.org/10.1021/ct500592m
Li, Y., Pierce, B.G., Wang, Q., Keck, Z.Y., Fuerst, T.R., Foung, S.K., Mariuzza, R.A., Structural basis for penetration of the glycan shield of hepatitis C virus E2 glycoprotein by a broadly neutralizing human antibody (2015) J Biol Chem, 290, pp. 10117-10125. , http://dx.doi.org/10.1074/jbc.M115.643528
Meola, A., Tarr, A.W., England, P., Meredith, L.W., McClure, C.P., Foung, S.K., McKeating, J.A., Krey, T., Structural flexibility of a conserved broadly neutralizing epitope in hepatitis C virus glycoprotein E2 (2015) J Virol, 89, pp. 2170-2181. , http://dx.doi.org/10.1128/JVI.02190-14
Generation and characterization of monoclonal antibodies against a cyclic variant of Hepatitis C Virus E2 epitope 412-422
The hepatitis C virus (HCV) E2 envelope glycoprotein is crucial for virus entry into hepatocytes. A conserved region of E2 encompassing amino acids 412 to 423 (epitope I) and containing Trp420, a residue critical for virus entry, is recognized by several broadly neutralizing antibodies. Peptides embodying this epitope I sequence adopt a β-hairpin conformation when bound to neutralizing monoclonal antibodies (MAbs) AP33 and HCV1. We therefore generated new mouse MAbs that were able to bind to a cyclic peptide containing E2 residues 412 to 422 (C-epitope I) but not to the linear counterpart. These MAbs bound to purified E2 with affinities of about 50 nM, but they were unable to neutralize virus infection. Structural analysis of the complex between C-epitope I and one of our MAbs (C2) showed that the Trp420 side chain is largely buried in the combining site and that the Asn417 side chain, which is glycosylated in E2 and solvent exposed in other complexes, is slightly buried upon C2 binding. Also, the orientation of the cyclic peptide in the antibody-combining site is rotated by 180° compared to the orientations of the other complexes. All these structural features, however, do not explain the lack of neutralization activity. This is instead ascribed to the high degree of selectivity of the new MAbs for the cyclic epitope and to their inability to interact with the epitope in more flexible and extended conformations, which recent data suggest play a role in the mechanisms of neutralization escape. IMPORTANCE: Hepatitis C virus (HCV) remains a major health care burden, affecting almost 3% of the global population. The conserved epitope comprising residues 412 to 423 of the viral E2 glycoprotein is a valid vaccine candidate because antibodies recognizing this region exhibit potent neutralizing activity. This epitope adopts a β-hairpin conformation when bound to neutralizing MAbs. We explored the potential of cyclic peptides mimicking this structure to elicit anti-HCV antibodies. MAbs that specifically recognize a cyclic variant of the epitope bind to soluble E2 with a lower affinity than other blocking antibodies and do not neutralize virus. The structure of the complex between one such MAb and the cyclic epitope, together with new structural data showing the linear peptide bound to neutralizing MAbs in extended conformations, suggests that the epitope displays a conformational flexibility that contributes to neutralization escape. Such features can be of major importance for the design of epitope-based anti-HCV vaccines.
Generation and characterization of monoclonal antibodies against a cyclic variant of Hepatitis C Virus E2 epitope 412-422
Bogdanovich S, Kim Y, Mizutani T, Yasuma R, Tudisco L, Cicatiello V, Bastos-carvalho A, Kerur N, Hirano Y, Baffi JZ, Tarallo V, Li S, Yasuma T, Arpitha P, Fowler BJ, Wright CB, Apicella I, Greco A, Brunetti A, Ruvo M, Sandomenico A, Nozaki M, Ijima R, Kaneko H, Ogura Y, Terasaki H, Ambati BK, Leusen JH, Langdon WY, Clark MR, Armour KL, Bruhns P, Verbeek JS, Gelfand BD, De Falco S, Ambati J * Human IgG1 antibodies suppress angiogenesis in a target-independent manner(557 views) Signal Transduct Target Ther (ISSN: 2059-3635print), 2016; 1: N/D-N/D. Impact Factor:0 ViewExport to BibTeXExport to EndNote
Kim YH, Shin SW, Pellicano R, Fagoonee S, Choi IJ, Kim YI, Park B, Choi JM, Kim SG, Choi J, Park JY, Oh S, Yang HJ, Lim JH, Im JP, Kim JS, Jung HC, Ponzetto A, Figura N, Malfertheiner P, Choi IJ, Kook MC, Kim YI, Cho SJ, Lee JY, Kim CG, Park B, Nam BH, Bae SE, Choi KD, Choe J, Kim SO, Na HK, Choi JY, Ahn JY, Jung KW, Lee J, Kim DH, Chang HS, Song HJ, Lee GH, Jung HY, Seta T, Takahashi Y, Noguchi Y, Shikata S, Sakai T, Sakai K, Yamashita Y, Nakayama T, Leja M, Park JY, Murillo R, Liepniece-karele I, Isajevs S, Kikuste I, Rudzite D, Krike P, Parshutin S, Polaka I, Kirsners A, Santare D, Folkmanis V, Daugule I, Plummer M, Herrero R, Tsukamoto T, Nakagawa M, Kiriyama Y, Toyoda T, Cao X, Corral JE, Mera R, Dye CW, Morgan DR, Lee YC, Lin JT, Garcia Martin R, Matia Cubillo A, Lee SH, Park JM, Han YM, Ko WJ, Hahm KB, Leontiadis GI, Ford AC, Ichinose M, Sugano K, Jeong M, Park JM, Han YM, Park KY, Lee DH, Yoo JH, Cho JY, Hahm KB, Bang CS, Baik GH, Shin IS, Kim JB, Suk KT, Yoon JH, Kim YS, Kim DJ * Helicobacter pylori Eradication for Prevention of Metachronous Recurrence after Endoscopic Resection of Early Gastric Cancer(297 views) N Engl J Med (ISSN: 0028-4793, 0028-4793linking, 1533-4406electronic), 2015 Jun; 30642104201566393291: 749-756. Impact Factor:59.558 ViewExport to BibTeXExport to EndNote