Integrin-targeting with peptide-bioconjugated semiconductor-magnetic nanocrystalline heterostructures(387 views) Valente G, Depalo N, De Paola I, Iacobazzi RM, Denora N, Laquintana V, Comparelli R, Altamura E, Latronico T, Altomare M, Fanizza E, Striccoli M, Agostiano A, Saviano M, Del Gatto A, Zaccaro L, Curri ML
Keywords: Active Targeting, Cyclic Rgd Peptide, Magnetic Nanostructure, Nanocrystalline Heterostructures, Photoactive Semiconductor, αvβ3 Integrin,
Affiliations: *** IBB - CNR ***
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, Bari, Italy
Istituto per i Processi Chimico-Fisici-CNR UOS Bari, Via Orabona 4, Bari, Italy
Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone, 16, Napoli, Italy
Dipartimento di Farmacia – Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, Bari, Italy
Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, Bari, Italy
Istituto di Cristallografia-CNR, Via Amendola 122/O, Bari, Italy
References: Park, K., Lee, S., Kang, E., Kim, K., Choi, K., Kwon, I.C., New generation of multifunctional nanoparticles for cancer imaging and therapy (2009) Adv. Funct. Mater., 19, pp. 1553-156
Bardhan, R., Lal, S., Joshi, A., Halas, N.J., Theranostic nanoshells: From probe design to imaging and treatment of cancer (2011) Acc. Chem. Res., 44, pp. 936-946
Fu, A.H., Wilson, R.J., Smith, B.R., Mullenix, J., Earhart, C., Akin, D., Guccione, S., Gambhir, S.S., Fluorescent magnetic nanoparticles for magnetically enhanced cancer imaging and targeting in living subjects (2012) ACS Nano, 6, pp. 6862-6869
Yu, J., Yang, C., Li, J., Ding, Y.C., Zhang, L., Yousaf, M.Z., Lin, J., Xu, L.L., Multifunctional Fe5C2 nanoparticles: A targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-guided photothermal therapy (2014) Adv. Mater., 26, pp. 4114-4120
Tang, W., Zhen, Z.P., Yang, C., Wang, L.N., Cowger, T., Chen, H.M., Todd, T., Hou, Y.L., Fe5C2 nanoparticles with high MRI contrast enhancement for tumor imaging (2014) Small, 10, pp. 1245-1249
Bertrand, N., Wu, J., Xu, X.Y., Kamaly, N., Farokhzad, O.C., Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology (2014) Adv. Drug Deliv. Rev., 66, pp. 2-25
Banerjee, D., Harfouche, R., Sengupta, S., Nanotechnologymediated targeting of tumor angiogenesis (2011) Vascular Cell, 3, pp. 3-13
Montet, X., Montet-Abou, K., Reynolds, F., Weissleder, R., Josephson, L., Nanoparticle imaging of integrins on tumor cells (2006) Neoplasia, 8, pp. 214-222
Ye, Y.P., Chen, X.Y., Integrin targeting for tumor optical imaging (2011) Theranostics, 1, pp. 102-126
Danhier, F., Le Breton, A., Préat, V., RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis (2012) Mol. Pharm., 9, pp. 2961-2973
Scari, G., Porta, F., Fascio, U., Avvakumova, S.D., Santo, V.D., Simone, M., Saviano, M., Pedone, C., Gold nanoparticles capped by a GCcontaining peptide functionalized with an RGD motif for integrin targeting (2012) Bioconjugate Chem., 23, pp. 340-349
Lee, J., Lee, T.S., Ryu, J., Hong, S., Kang, M., Im, K., Kang, J.H., Song, R., RGD peptideconjugated multimodal NaGdF4: Yb3+/Er3+ nanophosphors for upconversion luminescence, MR, and PET imaging of tumor angiogenesis (2013) J. Nucl. Med., 54, pp. 96-103
Zhang, F., Huang, X.L., Zhu, L., Guo, N., Niu, G., Swierczewska, M., Lee, S., Mohamedali, K.A., Noninvasive monitoring of orthotopic glioblastoma therapy response using RGD-conjugated iron oxide nanoparticles (2012) Biomaterials, 33, pp. 5414-5422
Shi, P., Chen, H.F., Cho, M.R., Stroscio, M.A., Peptidedirected binding of quantum dots to integrins in human fibroblast (2006) IEEE Trans. Nanobioscience, 5, pp. 15-19
Chen, H.W., Wang, L.Y., Yeh, J., Wu, X.Y., Cao, Z.H., Wang, Y.A., Zhang, M.M., Mao, H., Reducing non-specific binding and uptake of nanoparticles and improving cell targeting with an antifouling PEO-b-P?MPS copolymer coating (2010) Biomaterials, 31, pp. 5397-5407
Wang, C., Bao, C.C., Liang, S.J., Fu, H.L., Wang, K., Deng, M., Liao, Q.D., Cui, D.X., RGD-conjugated silicacoated gold nanorods on the surface of carbon nanotubes for targeted photoacoustic imaging of gastric cancer (2014) Nanoscale Res. Lett., 9, p. 264
Nazli, C., Ergenc, T.I., Yar, Y., Acar, H.Y., Kizilel, S., RGDS-functionalized polyethylene glycol hydrogel-coated magnetic iron oxide nanoparticles enhance specific intracellular uptake by HeLa cells (2012) Int. J. Nanomedicine, 7, pp. 1903-1920
Gao, J.H., Chen, K., Xie, R.G., Xie, J., Yan, Y.J., Cheng, Z., Peng, X.G., Chen, X.Y., In vivo tumor-targeted fluorescence imaging using near-infrared non-cadmium quantum dots (2010) Bioconjugate Chem., 21, pp. 604-609
Yin, H.Q., Mai, D.S., Gan, F., Chen, X.J., One-step synthesis of linear and cyclic RGD conjugated gold nanoparticles for tumour targeting and imaging (2014) RSC Adv., 4, pp. 9078-9085
Arosio, D., Manzoni, L., Araldi, E.M.V., Scolastico, C., Cyclic RGD functionalized gold nanoparticles for tumor targeting (2011) Bioconjugate Chem., 22, pp. 664-672
Depalo, N., Carrieri, P., Comparelli, R., Striccoli, M., Agostiano, A., Bertinetti, L., Innocenti, C., Curri, M.L., Biofunctionalization of anisotropic nanocrystalline semiconductor-magnetic heterostructures (2011) Langmuir, 27, pp. 6962-6970
Santhosh, P.B., Ulrih, N.P., Multifunctional superparamagnetic iron oxide nanoparticles: Promising tools in cancer theranostics (2013) Cancer Lett., 336, pp. 8-17
Hao, R., Xing, R.J., Xu, Z.C., Hou, Y.L., Gao, S., Sun, S.H., Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles (2010) Adv. Mater., 22, pp. 2729-2742
Yin, Z.F., Wu, L., Yang, H.G., Su, Y.H., Recent progress in biomedical applications of titanium dioxide (2013) Phys. Chem. Chem. Phys., 15, pp. 4844-4858
Thurn, K.T., Arora, H., Paunesku, T., Wu, A.G., Brown, E.M.B., Doty, C., Kremer, J., Woloschak, G., Endocytosis of titanium dioxide nanoparticles in prostate cancer PC-3M cells (2011) Nanomedicine, 7, pp. 123-130
Huang, K.Q., Chen, L., Deng, J.G., Xiong, J.W., Enhanced visible-light photocatalytic performance of nanosized anatase TiO2 doped with CdS quantum dots for cancer-cell treatment (2012) J. Nanomater., p. 2012
Mallik, A., Bryan, S., Puukila, S., Chen, A.C., Khaper, N., Efficacy of Pt-modified TiO2 nanoparticles in cardiac cells (2011) Exp. Clin. Cardiol., 16, pp. 6-10
Nolan, M., Electronic coupling in iron oxide-modified TiO2 leads to a reduced band gap and charge separation for visible light active photocatalysis (2011) Phys. Chem. Chem. Phys., 13, pp. 18194-18199
Jokerst, J.V., Lobovkina, T., Zare, R.N., Gambhir, S.S., Nanoparticle PEGylation for imaging and therapy (2011) Nanomedicine, 6, pp. 715-728
Buonsanti, R., Grillo, V., Carlino, E., Giannini, C., Curri, M.L., Innocenti, C., Sangregorio, C., Agostiano, A., Seeded growth of asymmetric binary nanocrystals made of a semiconductor TiO2 rodlike section and a magnetic Fe2O3spherical domain (2006) J. Am. Chem. Soc., 128, pp. 16953-16970
Dubertret, B., Skourides, P., Norris, D.J., Noireaux, V., Brivanlou, A.H., Libchaber, A., In vivo imaging of quantum dots encapsulated in phospholipid micelles (2002) Science, 298, pp. 1759-1762
Sarkar, R., Ghosh, M., Pal, S.K., Ultrafast relaxation dynamics of a biologically relevant probe dansyl at the micellar surface (2005) J. Photochem. Photobiol. B, 78, pp. 93-98
Holmes-Farley, S.R., Whitesides, G.M., Fluorescence properties of dansyl groups covalently bonded to the surface of oxidatively functionalized low-density polyethylene film (1986) Langmuir, 2, pp. 266-281
Karabacak, M., Cinar, M., Kurt, M., Poiyamozhi, A., Sundaraganesan, N., The spectroscopic (FT-IR, FT-Raman, UV and NMR) first order hyperpolarizability and HOMO–LUMO analysis of dansyl chloride (2014) Spectrochim. Acta A Mol. Biomol. Spectrosc., 117, pp. 234-244
Capaßso, D., de Paola, I., Liguoro, A.D., Gatto, A., Di Gaetano, S., Guarnieri, D., Saviano, M., Zaccaro, L., RGDechihCit: avß3 selective pro-apoptotic peptide as potential carrier for drug delivery into melanoma metastatic cells (2014) PLoS One, 9, p. 10644
Graf, N., Bielenberg, D.R., Kolishetti, N., Muus, C., Banyard, J., Farokhzad, O.C., Lippard, S.J., avß3 integrintargeted PLGA-PEG nanoparticles for enhanced anti-tumor efficacy of a Pt(IV) prodrug (2012) ACS Nano, 6, pp. 4530-4539
Castel, S., Pagan, R., Mitjans, F., Piulats, J., Goodman, S., Jonczyk, A., Huber, F., Reina, M., RGD peptides and monoclonal antibodies, antagonists of av-integrin, enter the cells by independent endocytic pathways (2001) Lab. Invest., 81, pp. 1615-1626
Aguzzi, M.S., Fortugno, P., Giampietri, C., Ragone, G., Capogrossi, M.C., Facchiano, A., Intracellular targets of RGDS peptide in melanoma cells (2010) Mol. Cancer, 9, p. 84
Integrin-targeting with peptide-bioconjugated semiconductor-magnetic nanocrystalline heterostructures