Aptamer-mediated impairment of EGFR-integrin alphavbeta3 complex inhibits vasculogenic mimicry and growth of triple-negative breast cancers(483 views)(PDF public223 views) Camorani S, Crescenzi E, Gramanzini M, Fedele M, Zannetti A, Cerchia L
Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore" (IEOS), Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Naples, Italy., Istituto di Biostrutture e Bioimmagini (IBB), Consiglio Nazionale delle Ricerche (CNR), Via T. De Amicis 95, 80145 Naples, Italy.,
Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore” (IEOS), Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, Naples, 80131, Italy
References: Dent, R., Triple-negative breast cancer: Clinical features and patterns of recurrence (2007) Clin. Cancer Res., 13, pp. 4429-443
Lehmann, B.D., Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies (2011) J. Clin. Invest., 121, pp. 2750-2767
Mayer, I.A., Abramson, V.G., Lehmann, B.D., Pietenpol, J.A., New strategies for triple-negative breast cancer–deciphering the heterogeneity (2014) Clin. Cancer Res., 20, pp. 782-790
Masuda, H., Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes (2013) Clin. Cancer Res., 19, pp. 5533-5540
Schneider, B.P., Triple-negative breast cancer: Risk factors to potential targets (2008) Clin. Cancer Res., 14, pp. 8010-8018
Carey, L.A., The triple negative paradox: Primary tumor chemosensitivity of breast cancer subtypes (2007) Clin. Cancer Res., 13, pp. 2329-2334
Liu, T.J., CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer (2013) Oncogene, 32, pp. 544-553
Plantamura, I., PDGFRβ and FGFR2 mediate endothelial cell differentiation capability of triple negative breast carcinoma cells (2014) Mol. Oncol., 8, pp. 968-981
Wagenblast, E., A model of breast cancer heterogeneity reveals vascular mimicry as a driver of metastasis (2015) Nature, 520, pp. 358-362
Kirschmann, D.A., Seftor, E.A., Hardy, K.M., Seftor, R.E., Hendrix, M.J., Molecular pathways: Vasculogenic mimicry in tumor cells: Diagnostic and therapeutic implications (2012) Clin. Cancer Res., 18, pp. 2726-2732
Masuda, H., Role of epidermal growth factor receptor in breast cancer (2012) Breast Cancer Res. Treat., 136, pp. 331-345
Park, H.S., High EGFR gene copy number predicts poor outcome in triple-negative breast cancer (2014) Mod. Pathol., 27, pp. 1212-1222
Corkery, B., Crown, J., Clynes, M., O’Donovan, N., Epidermal growth factor receptor as a potential therapeutic target in triple-negative breast cancer (2009) Ann. Oncol., 20, pp. 862-867
Von Minckwitz, G., A multicentre phase II study on gefitinib in taxane- And anthracycline-pretreated metastatic breast cancer (2005) Breast Cancer Res. Treat., 89, pp. 165-172
Baselga, J., Phase II and tumor pharmacodynamic study of gefitinib in patients with advanced breast cancer (2005) J. Clin. Oncol., 23, pp. 5323-5333
Dickler, M.N., Cobleigh, M.A., Miller, K.D., Klein, P.M., Winer, E.P., Efficacy and safety of erlotinib in patients with locally advanced or metastatic breast cancer (2009) Breast Cancer Res. Treat., 115, pp. 115-121
Cowherd, S., A phase II clinical trial of weekly paclitaxel and carboplatin in combination with panitumumab in metastatic triple negative breast cancer (2015) Cancer Biol. Ther., 16, pp. 678-683
Seguin, L., An integrin β3-KRAS-RalB complex drives tumour stemness and resistance to EGFR inhibition (2014) Nat. Cell Biol., 16, pp. 457-468
Lee, M.J., Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks (2012) Cell, 149, pp. 780-794
Cerchia, L., De Franciscis, V., Targeting cancer cells with nucleic acid aptamers (2010) Trends Biotechnol., 28, pp. 517-525
Keefe, A.D., Pai, S., Ellington, A., Aptamers as therapeutics (2010) Nat. Rev. Drug Discov., 9, pp. 537-550
Thiel, K.W., Giangrande, P.H., Intracellular delivery of RNA-based therapeutics using aptamers (2010) Ther. Deliv., 1, pp. 849-861
Wang, A.Z., Langer, R., Farokhzad, O.C., Nanoparticle delivery of cancer drugs (2012) Annu. Rev. Med., 63, pp. 185-198
Esposito, C.L., A neutralizing RNA aptamer against EGFR causes selective apoptotic cell death (2011) Plos One, 6, p. e24071
Camorani, S., Inhibition of receptor signaling and of glioblastoma-derived tumor growth by a novel PDGFRβ aptamer (2014) Mol. Ther., 22, pp. 828-841
Camorani, S., Aptamer targeting EGFRvIII mutant hampers its constitutive autophosphorylation and affects migration, invasion and proliferation of glioblastoma cells (2015) Oncotarget, 6, pp. 37570-37587
Shu, D., Systemic Delivery of Anti-miRNA for Suppression of Triple Negative Breast Cancer Utilizing RNA Nanotechnology (2015) ACS Nano, 9, pp. 9731-9740
Kim, Y., Platelet-derived growth factor receptors differentially inform intertumoral and intratumoral heterogeneity (2012) Genes Dev, 26, pp. 1247-1262
D’ Ippolito, E., MiR-9 and miR-200 Regulate PDGFRβ-Mediated Endothelial Differentiation of Tumor Cells in Triple-Negative Breast Cancer (2016) Cancer Res., 76, pp. 5562-5572
Ruf, W., Differential role of tissue factor pathway inhibitors 1 and 2 in melanoma vasculogenic mimicry (2003) Cancer Res., 63, pp. 5381-5399
Amiano, N.O., Anti-tumor effect of SLPI on mammary but not colon tumor growth (2013) J. Cell Physiol., 228, pp. 469-475
Fayard, B., The serine protease inhibitor protease nexin-1 controls mammary cancer metastasis through LRP-1-mediated MMP-9 expression (2009) Cancer Res., 69, pp. 5690-5698
Desgrosellier, J.S., Cheresh, D.A., Integrins in cancer: Biological implications and therapeutic opportunities (2010) Nat. Rev. Cancer, 10, pp. 9-22
Niu, G., Chen, X., Why integrin as a primary target for imaging and therapy (2011) Theranostics, 1, pp. 30-47
Huttenlocher, A., Horwitz, A.R., Integrins in cell migration (2011) Cold Spring Harb. Perspect Biol., 3, p. a005074
Vartanian, A., Melanoma vasculogenic mimicry capillary-like structure formation depends on integrin and calcium signaling (2011) Microcirculation, 18, pp. 390-399
Soung, Y.H., Clifford, J.L., Chung, J., Crosstalk between integrin and receptor tyrosine kinase signaling in breast carcinoma progression (2010) BMB Rep., 43, pp. 311-318
Das, R., Mahabeleshwar, G.H., Kundu, G.C., Osteopontin induces AP-1-mediated secretion of urokinase-type plasminogen activator through c-Src-dependent epidermal growth factor receptor transactivation in breast cancer cells (2004) J. Biol. Chem., 279, pp. 11051-11064
Liu, Z., EGFRvIII/integrin β3 interaction in hypoxic and vitronectinenriching microenvironment promote GBM progression and metastasis (2016) Oncotarget, 7, pp. 4680-4694
Moro, L., Integrin-induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines (2002) J. Biol. Chem., 277, pp. 9405-9414
Carlson, T.R., Feng, Y., Maisonpierre, P.C., Mrksich, M., Morla, A.O., Direct cell adhesion to the angiopoietins mediated by integrins (2001) J. Biol. Chem., 276, pp. 26516-26525
Baselga, J., Randomized phase II study of the anti-epidermal growth factor receptor monoclonal antibody cetuximab with cisplatin versus cisplatin alone in patients with metastatic triple-negative breast cancer (2013) J. Clin. Oncol., 31, pp. 2586-2592
Rudek, M.A., Chau, C.H., Figg, W., McLeod, H.L., (2014) Handbook of Anticancer Pharmacokinetics and Pharmacodynamics, pp. 599-602. , Springer-Verlag, New York
Qiao, L., Advanced research on vasculogenic mimicry in cancer (2015) J. Cell Mol. Med., 19, pp. 315-326
Nguyen, L.V., DNA barcoding reveals diverse growth kinetics of human breast tumour subclones in serially passaged xenografts (2014) Nat. Commun., 5, p. 5871
Blick, T., Epithelial mesenchymal transition traits in human breast cancer cell lines (2008) Clin. Exp. Metastasis, 25, pp. 629-642
Betapudi, V., Licate, L.S., Egelhoff, T.T., Distinct roles of nonmuscle myosin II isoforms in the regulation of MDA-MB-231 breast cancer cell spreading and migration (2006) Cancer Res., 66, pp. 4725-4733
Han, H.J., Russo, J., Kohwi, Y., Kohwi-Shigematsu, T., SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis (2008) Nature, 452, pp. 187-193
Hendrix, M.J., Seftor, E.A., Hess, A.R., Seftor, R.E., Vasculogenic mimicry and tumour-cell plasticity: Lessons from melanoma (2003) Nat. Rev. Cancer, 3, pp. 411-421
Yarden, Y., Biology of HER2 and its importance in breast cancer (2001) Oncology, 61, pp. 1-13
Moore, K.M., Therapeutic targeting of integrin αvβ6 in breast cancer (2014) J. Natl. Cancer Inst., p. 106
De Franceschi, N., Hamidi, H., Alanko, J., Sahgal, P., Ivaska, J., Integrin traffic - The update (2015) J. Cell. Sci., 128, pp. 839-852
Muharram, G., Tensin-4-dependent MET stabilization is essential for survival and proliferation in carcinoma cells (2014) Dev. Cell., 29, pp. 421-436
Borges, E., Jan, Y., Ruoslahti, E., Platelet-derived growth factor receptor beta and vascular endothelial growth factor receptor 2 bind to the beta 3 integrin through its extracellular domain (2000) J. Biol. Chem., 275, pp. 39867-43973
Aptamer-mediated impairment of EGFR-integrin alphavbeta3 complex inhibits vasculogenic mimicry and growth of triple-negative breast cancers