New comprehensive studies of a gold(III) Dithiocarbamate complex with proven anticancer properties: Aqueous dissolution with cyclodextrins, pharmacokinetics and upstream inhibition of the ubiquitin-proteasome pathway
New comprehensive studies of a gold(III) Dithiocarbamate complex with proven anticancer properties: Aqueous dissolution with cyclodextrins, pharmacokinetics and upstream inhibition of the ubiquitin-proteasome pathway(618 views) Tomasello MF, Nardon C, Lanza V, Di Natale G, Pettenuzzo N, Salmaso S, Milardi D, Caliceti P, Pappalardo G, Fregona D
Eur J Med Chem (ISSN: 0223-5234, 1768-3254, 0223-5234linking), 2017 Jun 19; 138: 115-127.
Keywords: Anticancer Agents, Cyclodextrin, Gold Complexes, Proteasome Inhibitors, 2 Hydroxypropyl Beta Cyclodextrin, Alpha Cyclodextrin, Antineoplastic Agent, Coordination Compound, Dithiocarbamic Acid Derivative, Gold Derivative, Gold Iii Dithiocarbamate Complex, Methyl Beta Cyclodextrin, Oligosaccharide, Ubiquitin, Unclassified Drug, Water, Animal Experiment, Antineoplastic Activity, Aqueous Solution, Area Under The Curve, Article, Atomic Absorption Spectrometry, Blood Sampling, Distribution Half-Life, Drug Clearance, Drug Degradation, Drug Distribution, Drug Half Life, Drug Mechanism, Drug Solubility, Drug Stability, Drug Structure, Drug Synthesis, Elimination Rate Constant, Female, Human, Human Cell, Hydrophobicity, In Vitro Study, Mouse, Nonhuman, Tumor Cell Line, Ubiquitination, Antagonists And Inhibitors, Bagg Albino Mouse, Cell Proliferation, Chemical Structure, Chemistry, Dose Response, Drug Effects, Drug Screening, Metabolism, Structure Activity Relation, Tissue Distribution, Tumor Cell Culture, Dose-Response Relationship, Drug Screening Assays, Antitumor, Inbred Balb C, Molecular Structure, Proteasome Endopeptidase Complex, Structure-Activity Relationship,
Affiliations: *** IBB - CNR ***
IBB-CNR, Istituto di Biostrutture e Bioimmagini, Sede Secondaria di Catania, Via Paolo Gaifami, 18 - 95126, Catania, Italy., Universita degli Studi di Padova, Dipartimento di Scienze Chimiche, Via F. Marzolo 1, 35131, Padova, Italy., Universita degli Studi di Padova, Dipartimento di Scienze Farmaceutiche, Via F. Marzolo 5, 35131, Padova, Italy., IBB-CNR, Istituto di Biostrutture e Bioimmagini, Sede Secondaria di Catania, Via Paolo Gaifami, 18 - 95126, Catania, Italy. Electronic address: giuseppe.pappalardo@cnr.it., Universita degli Studi di Padova, Dipartimento di Scienze Chimiche, Via F. Marzolo 1, 35131, Padova, Italy. Electronic address: dolores.fregona@unipd.it.,
Università degli Studi di Padova, Dipartimento di Scienze Chimiche, Via F. Marzolo 1, Padova, 35131, Italy
References: Kelland, L., The resurgence of platinum-based cancer chemotherapy (2007) Nat. Rev. Cancer, 7, pp. 573-58
Florea, A.M., Büsselberg, D., Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects (2011) Cancers, 3, pp. 1351-1371
Oberoi, H.S., Nukolova, N.V., Kabanov, A.V., Bronich, T.K., Nanocarriers for delivery of platinum anticancer drugs (2013) Adv. Drug Deliv. Rev., 65, pp. 1667-1685
Nardon, C., Boscutti, G., Fregona, D., Beyond platinums: gold complexes as anticancer agents (2014) Anticancer Res., 34, pp. 487-492
Nardon, C., Fregona, D., Gold(III) complexes in the oncological preclinical arena: from aminoderivatives to peptidomimetics (2016) Curr. Top. Med. Chem., 16, pp. 360-380
Ronconi, L., Marzano, C., Zanello, P., Corsini, M., Miolo, G., Maccà, C., Trevisan, A., Fregona, D., Gold(III) dithiocarbamate derivatives for the treatment of cancer: solution chemistry, DNA binding, and hemolytic properties (2006) J. Med. Chem., 49, pp. 1648-1657
Ringhieri, P., Iannitti, R., Nardon, C., Palumbo, R., Fregona, D., Morelli, G., Accardo, A., Target selective micelles for bombesin receptors incorporating Au(III)-dithiocarbamato complexes (2014) Int. J. Pharm., 473, pp. 194-202
Crini, G., A history of cyclodextrins (2014) Chem. Rev., 114, pp. 10940-10975
Hu, Q.D., Tang, G.P., Chu, P.K., Cyclodextrin-based host-guest supramolecular nanoparticles for delivery: from design to applications (2014) Acc. Chem. Res., 47, pp. 2017-2025
Ol'khovich, M.V., Sharapova, A.V., Lavrenov, S.N., Blokhina, S.V., Perlovich, G.L., Inclusion complexes of hydroxypropyl-β-cyclodextrin with novel cytotoxic compounds: solubility and thermodynamic properties (2014) Fluid Phase Equilib., 384, pp. 68-72
Jadhav, V.B., Jun, Y.J., Song, J.H., Park, M.K., Oh, J.H., Chae, S.W., Kim, I.S., Sohn, Y.S., A novel micelle-encapsulated platinum(II) anticancer agent (2010) J. Control. Release, 147, pp. 144-150
Avaji, P.J., Joo, H.I., Park, J.H., Park, K.S., Junc, Y.J., Lee, H.J., Sohn, Y.S., Synthesis and properties of a new micellar polyphosphazene–platinum(II) conjugate drug (2014) J. Inorg. Biochem., 140, pp. 45-52
Watanabe, T., Monzen, H., Hara, M., Mizowaki, T., Hiraoka, M., Pharmacokinetic model of myocardial (99m)Tc-sestamibi washout (2013) Ann. Nucl. Med., 27, pp. 279-284
Li, Y., Guo, P., Lin, N., Li, Q., Pharmacokinetics of di-phenyl-di-(2,4-dichlorbenzohydroxamato) tin (IV): a new metal-based candidate with promising antitumor activity in rats (2014) Inorg. Chim. Acta, 423, pp. 235-241
Wu, Y., Ding, L., Huang, N.Y., Wen, A.D., Liu, B., Li, W.B., Pharmacokinetics of metronidazole, tetracycline and bismuth in healthy volunteers after oral administration of compound tablets containing a combination of metronidazole, tetracycline hydrochloride and bismuth oxide (2015) Drug Res., 65, pp. 74-78
Ott, I., Biodistribution of metals and metallodrugs (2013) Comprehensive Inorganic Chemistry II: from Elements to Applications, 3, pp. 933-949. , second ed. J. Reedijk K. Poeppelmeier Elsevier Amsterdam
Vértiz, G., García-Ortuño, L.E., Bernal, J.P., Bravo-Gómez, M.E., Lounejeva, E., Huerta, A., Ruiz-Azuara, L., Pharmacokinetics and hematotoxicity of a novel copper-based anticancer agent: casiopeina III-Ea, after a single intravenous dose in rats (2014) Fundam. Clin. Pharmacol., 28, pp. 78-87
Sessa, C., Capri, G., Gianni, L., Peccatori, F., Grasselli, G., Bauer, J., Zucchetti, M., Marsoni, S., Clinical and pharmacological phase I study with accelerated titration design of a daily times five schedule of BBR3464, a novel cationic triplatinum complex (2000) Ann. Oncol., 11, pp. 977-983
Gottlieb, N.L., Comparative pharmacokinetics of parenteral and oral gold compounds (1982) J. Rheumatol., 8, pp. 99-109
Blocka, K., Furst, D.E., Landaw, E., Dromgoole, S., Blomberg, A., Paulus, H.E., Single dose pharmacokinetics of auranofin in rheumatoid arthritis (1982) J. Rheumatol., 8, pp. 110-119
Grigoreva, T.A., Tribulovich, V.G., Garabadzhiu, A.V., Melino, G., Barlev, N.A., The 26S proteasome is a multifaceted target for anti-cancer therapies (2015) Oncotarget, 6, pp. 24733-24749
Johnson, D.E., The ubiquitin-proteasome system: opportunities for therapeutic intervention in solid tumors (2015) Endocr.-Relat. cancer, 22, pp. T1-T17
Dalla Via, L., Nardon, C., Fregona, D., Targeting the ubiquitin–proteasome pathway with inorganic compounds to fight cancer: a challenge for the future (2012) Future Med. Chem., 4, pp. 525-543
Kisselev, A.F., Van Der Linden, W.A., Overkleeft, H.S., Proteasome inhibitors: an expanding army attacking a unique target (2012) Chem. Biol., 19, pp. 99-115
McBride, A., Klaus, J.O., Stockerl-Goldstein, K., Carfilzomib: a second-generation proteasome inhibitor for the treatment of multiple myeloma (2015) Am. J. Health Syst. Pharm., 72, pp. 353-360
Santoro, A.M., Lo Giudice, M.C., D'Urso, A., Lauceri, R., Purrello, R., Milardi, D., Cationic porphyrins are reversible proteasome inhibitors (2012) J. Am. Chem. Soc., 134, pp. 10451-10457
Santoro, A.M., Cunsolo, A., D'Urso, A., Sbardella, D., Tundo, G.R., Ciaccio, C., Coletta, M., Purrello, R., Cationic porphyrins are tunable gatekeepers of the 20S proteasome (2016) Chem. Sci., 7, pp. 1286-1297
Borissenko, L., Groll, M., 20S proteasome and its inhibitors: crystallographic knowledge for drug development (2007) Chem. Rev., 107, pp. 687-717
Deshaies, R.J., Protein degradation: prime time for PROTACs (2015) Nat. Chem. Biol., 11, pp. 634-635
Ciechanover, A., Proteolysis: from the lysosome to ubiquitin and the proteasome (2015) Nat. Rev. Mol. Cell. Biol., 16, pp. 322-324
Hou, Y.C., Deng, J.Y., Role of E3 ubiquitin ligases in gastric cancer (2015) World J. Gastroenterol., 21, pp. 786-793
An, H., Statsyuk, A.V., An inhibitor of ubiquitin conjugation and aggresome formation (2015) Chem. Sci., 6, pp. 5235-5245
Yang, Y., Kitagaki, J., Dai, R.M., Tsai, Y.C., Lorick, K.L., Ludwig, R.L., Pierre, S.A., Weissman, A.M., Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics (2007) Cancer Res., 67, pp. 9472-9481
Wei Xu, G., Ali, M., Wood, T.E., Wong, D., Maclean, N., Wang, X., Gronda, M., Schimmer, A.D., The ubiquitin-activating enzyme E1 as a therapeutic target for the treatment of leukemia and multiple myeloma (2010) Blood, 115, pp. 2251-2259
Zhang, X., Frezza, M., Milacic, V., Ronconi, L., Fan, Y., Bi, C., Fregona, D., Dou, Q.P., Inhibition of tumor proteasome activity by gold dithiocarbamato complexes via both redox-dependent and –independent processes (2010) J. Cell. Biochem., 109, pp. 162-172
Milacic, V., Chen, D., Ronconi, L., Landis-Piwowar, K.R., Fregona, D., Dou, Q.P., A novel anticancer gold(III) dithiocarbamate compound inhibits the activity of a purified 20S proteasome and 26S proteasome in human breast cancer cell cultures and xenografts (2006) Cancer Res., 66, pp. 10478-10486
Nardon, C., Schmitt, S.M., Yang, H., Zuo, J., Fregona, D., Dou, Q.P., Gold(III)-Dithiocarbamato peptidomimetics in the forefront of the targeted anticancer therapy: preclinical studies against human breast neoplasia (2014) PLoS One, 9, p. e84248
Dantuma, N.P., Lindsten, K., Glas, R., Jelne, M., Masucci, M.G., Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells (2000) Nat. Biotecnol., 18, pp. 538-543
Rickardson, L., Wickstrom, M., Larsson, R., Lovborg, H., Image-based screening for the identification of novel proteasome inhibitors (2007) J. Biomol. Screen, 12, pp. 203-210
Momose, I., Tatsuda, D., Ohba, S., Masuda, T., Ikedaq, D., Nomoto, A., In vivo imaging of proteasome inhibition using a proteasome-sensitive fluorescent reporter (2012) Cancer Sci., 103, pp. 1730-1736
Urru, S.A.M., Veglianese, P., De Luigi, A., Fumagalli, E., Erba, E., Gonella-Diaza, R., Carrà, A., Salmona, M., A new fluorogenic peptide determines proteasome activity in single cells (2010) J. Med. Chem., 53, pp. 7452-7460
Arena, G., Fattorusso, R., Grasso, G., Grasso, G.I., Isernia, C., Malgieri, G., Milardi, D., Rizzarelli, E., Zinc(II) complexes of ubiquitin: speciation, affinity and binding features (2011) Chem. Eur. J., 17, pp. 11596-11603
Milardi, D., Arnesano, F., Grasso, G., Magrì, A., Tabbì, G., Scintilla, S., Natile, G., Rizzarelli, E., Ubiquitin stability and the Lys63-linked polyubiquitination site are compromised on copper binding (2007) Angew. Chem. Int. Ed., 46, pp. 7993-7995
Ronconi, L., Giovagnini, L., Marzano, C., Bettìo, F., Graziani, R., Pilloni, G., Fregona, D., Gold dithiocarbamate derivatives as potential antineoplastic agents: design, spectroscopic properties, and in vitro antitumor activity (2005) Inorg. Chem., 44, pp. 1867-1881
Mosmann, T.J., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays (1983) J. Immunol. Methods, 65, pp. 55-63
Grasso, G., Lanza, V., Malgieri, G., Fattorusso, R., Pietropaolo, A., Rizzarelli, E., Milardi, D., The insulin degrading enzyme activates ubiquitin and promotes the formation of K48 and K63 diubiquitin (2015) Chem. Comm., 51, pp. 15724-15727
Chen, J.J., Tsu, C.A., Gavin, J.M., Milhollen, M.A., Bruzzese, F.J., Mallender, W.D., Sintchak, M.D., Dick, L.R., Mechanistic studies of substrate-assisted inhibition of ubiquitin-activating enzyme by adenosine sulfamate analogues (2011) J. Biol. Chem., 286, pp. 40687-40877
Arena, G., Bellia, F., Frasca, G., Grasso, G., Lanza, V., Rizzarelli, E., Tabbì, G., Milardi, D., Inorganic stressors of ubiquitin (2013) Inorg. Chem., 52, pp. 9567-9573
Yanes, O., Aviles, F.X., Roepstorff, P., Jørgensen, T.J.D., Exploring the “intensity fading” phenomenon in the study of noncovalent interactions by MALDI-TOF mass spectrometry (2007) J. Am. Soc. Mass Spectrom., 18, pp. 359-367
Ronconi, L., Nardon, C., Boscutti, G., Fregona, D., Perspective gold(III)-dithiocarbamato anticancer therapeutics: learning from the past, moving to the future (2013) Advances in Anti-cancer Agents in Medicinal Chemistry, 2, pp. 130-172. , M. Prudhomme Bentham e-book
(2016) European Medicines Agency: EMA/CHMP/333892/2013-Background Review for Cyclodextrins Used as Excipients, , April
Irie, T., Uekama, K., Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation (1997) J. Pharm. Sci., 86, pp. 147-162
Gould, S., Scott, R.C., 2-Hydroxypropyl-beta-cyclodextrin (HP-beta-CD): a toxicology review (2005) Food Chem. Toxicol., 43, pp. 1451-1459
Martin Del Valle, E.M., Cyclodextrins and their uses: a review (2004) Process Biochem., 39, pp. 1033-1046
Higuchi, T., Connors, K.A., Solid dispersion incorporated microcapsules: predictive tools for improve the half -life and dissolution rate of pioglitazone hydrochloride (1965) Adv. Anal. Chem. Instrum., 4, pp. 117-212
Challa, R., Ahuja, A., Ali, J., Khar, R.K., Cyclodextrins in drug delivery: an updated review (2005) AAPS Pharm. Sci. Tech., 6, pp. E329-E357
Trollope, L., Cruickshank, D.L., Noonan, T., Bourne, S.A., Sorrenti, M., Catenacci, L., Caira, M.R., Inclusion of trans-resveratrol in methylated cyclodextrins: synthesis and solid-state structures (2014) Beilstein J. Org. Chem., 10, pp. 3136-3151
Hiremath, S.N., Raghavendra, R.K., Sunil, F., Danki, L.S., Rampure, M.V., Swamy, P.V., Bhosale, U.V., Dissolution enhancement of gliclazide by preparation of inclusion complexes with β-cyclodextrin (2008) Asia J. Pharm., 2, pp. 73-76
Bertholet, P., Gueders, M., Dive, G., Albert, A., Barillaro, V., Perly, B., Cataldo, D., Evrard, B., The effect of cyclodextrins on the aqueous solubility of a new MMP inhibitor: phase solubility, 1H-NMR spectroscopy and molecular modeling studies, preparation and stability study of nebulizable solution (2005) J. Pharm. Pharm. Sci., 8, pp. 164-175
F.C Shaw, C., III, Gold-based therapeutic agents (1999) Chem. Rev., 99, pp. 2589-2600
Messori, L., Marcon, G., Gold complexes in the treatment of rheumatoid arthritis (2004) Marcel Dekker Metal Ions in Biological Systems, 41, pp. 279-304. , A. Sigel H. Sigel New York
Furst, D.E., Mechanism of action, pharmacology, clinical efficacy and side effects of auranofin. An orally administered organic gold compound for the treatment of rheumatoid arthritis (1983) Pharmacother, 3, pp. 284-298
Blocka, K.L., Auranofin versus injectable gold. Comparison of pharmacokinetic properties (1983) Am. J. Med., 75, pp. 114-122
Walz, D.T., Di Martino, M.J., Griswold, D.E., Intoccia, A.P., Flanagan, T.L., Biologic actions and pharmacokinetic studies of auranofin (1983) Am. J. Med., 75, pp. 90-108
Smith, M.D., Brooks, P.M., Gold compounds in rheumatic diseases. II (1984) Med. J. Aust., 144, pp. 77-81
Walz, D.T., Griswold, D.E., Di Martino, M.J., Bumbier, E.E., Pharmacokinetics of gold following administration of auranofin (SK+FD-39162) and myochrysine to rats (1980) J. Rheumatol., 7, pp. 820-824
Blocka, K.L., Paulus, H.E., Furst, D.E., Clinical pharmacokinetics of oral and injectable gold compounds (1986) Clin. Pharmacokinet., 11, pp. 133-143
Rubinstein, H.M., Dietz, A.A., Serum gold. II. Levels in rheumatoid arthritis (1973) Ann. Rheum. Dis., 32, pp. 128-132
Gerber, R.C., Paulus, H.E., Jennrich, R.I., Lederer, M., Bluestone, R., Blahd, W.H., Pearson, C.M., Gold kinetics following aurothiomalate therapy: use of a whole-body radiation counter (1974) J. Lab. Clin. Med., 83, pp. 778-789
Waller, E.S., Massarella, J.W., Crout, J.E., Yakatan, G.J., The half-life of gold sodium thiomalate (1979) Arthritis Rheum., 22, pp. 1418-1419
Furst, D.E., Dromgoole, S.H., Comparative pharmacokinetics of triethylphosphine gold (auranofin) and gold sodium thiomalate (GST) (1984) Clin. Rheumatol., 3, pp. 17-24
Hershko, A., The ubiquitin system for protein degradation and some of its roles in the control of the cell-division cycle (Nobel lecture) (2005) Angew. Chem. Int. Ed., 117, pp. 6082-6094
Kulathu, Y., Komander, D., A typical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages (2012) Nat. Rev. Mol. Cell. Biol., 13, pp. 508-522
Clague, M.J., Urbè, S., Ubiquitin: same molecule, different degradation pathways (2010) Cell, 143, pp. 682-685
Trempe, J.F., Reading the ubiquitin postal code (2011) Curr. Opin. Struct. Biol., 21, pp. 792-801
Mani, A., Gelmann, E.P., The ubiquitin-proteasome pathway and its role in cancer (2005) J. Clin. Oncol., 23, pp. 4776-4789
Varadan, R., Walker, O., Pickart, C., Fushman, D., Structural properties of polyubiquitin chains in solution (2002) J. Mol. Biol., 324, pp. 637-647
Twerenbold, D., Gerber, D., Gritti, D., Gonin, Y., Netuschill, A., Rossel, F., Vuilleumier, J.L., Single molecule detector for mass spectrometry with mass independent detection efficiency (2001) Proteomics, 1, pp. 66-69
Karas, M., Bahr, U., Laser desorption ionization mass spectrometry of large biomolecules (1990) TrAC Trends Anal. Chem., 9, pp. 321-325
Hillenkamp, F., Karas, M., Beavis, R.C., Chait, B.T., Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers (1991) Anal. Chem., 63, pp. 1193A-1203A
Yanes, O., Villanueva, J., Querol, E., Aviles, F.X., Detection of non-covalent protein interactions by ‘intensity fading’ MALDI-TOF mass spectrometry: applications to proteases and protease inhibitors (2007) Nat. Protoc., 2, pp. 119-130
Schulman, B.A., Harper, J.W., Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways (2009) Nat. Rev. Mol. Cell Biol., 10, pp. 319-331
Spreckelmeyer, S., Orvig, C., Casini, A., Cellular transport mechanisms of cytotoxic metallodrugs: an overview beyond cisplatin (2014) Molecules, 19, pp. 15584-15610
Altaf, M., Monim-Ul-Mehboob, M., Kawde, A.-N., Corona, G., Larcher, R., Ogasawara, M., Casagrande, N., Isab, A.A., New bipyridine gold(III) dithiocarbamate-containing complexes exerted a potent anticancer activity against cisplatin-resistant cancer cells independent of p53 status (2017) Oncotarget, 8, pp. 490-505
Barry, N.P.E., Sadler, P.J., 100 years of metal coordination chemistry: from Alfred Werner to anticancer metallodrugs (2014) Pure Appl. Chem., 86, pp. 1897-1910
Takahashi, K., Griem, P., Goebel, C., Gonzalez, J., Gleichmann, E., The antirheumatic drug gold, a coin with two faces: Au(I) and Au(III). Desired and undesired effects on the immune system (1994) Met. Based Drugs, 1, pp. 483-496
Shaw, G.F., III, Schraa, S., Gleichmann, E., Grover, Y.P., Dunemann, L., Jagarlamudi, A., Redox chemistry and [Au(CN)2] in the formation of gold metabolites (1994) Met. Based Drugs, 1, pp. 351-362
Buac, D., Schmitt, S., Ventro, G., Rani Kona, F., Ping Dou, Q., Dithiocarbamate-based coordination compounds as potent proteasome inhibitors in human cancer cells (2012) Mini-Rev. Med. Chem., 12, pp. 1193-1201
Cvek, B., Dvorak, Z., The value of proteasome inhibition in cancer. Can the old drug, disulfiram, have a bright new future as a novel proteasome inhibitor? (2008) Drug Discov. Today, 13, pp. 716-722
New comprehensive studies of a gold(III) Dithiocarbamate complex with proven anticancer properties: Aqueous dissolution with cyclodextrins, pharmacokinetics and upstream inhibition of the ubiquitin-proteasome pathway
New comprehensive studies of a gold(III) Dithiocarbamate complex with proven anticancer properties: Aqueous dissolution with cyclodextrins, pharmacokinetics and upstream inhibition of the ubiquitin-proteasome pathway
New comprehensive studies of a gold(III) Dithiocarbamate complex with proven anticancer properties: Aqueous dissolution with cyclodextrins, pharmacokinetics and upstream inhibition of the ubiquitin-proteasome pathway