Dipartimento di Scienze Biomediche Avanzate, Universita degli Studi di Napoli Federico II, 80131 Napoli, Italy.
Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche-IBB, CNR, 80145 Napoli, Italy.
CEINGE Biotecnologie Avanzate s.c.ar.l., 80131 Napoli, Italy.
IRCCS S.D.N., 80134 Napoli, Italy.
IRCCS S.D.N., Napoli, 80134, Italy
References: 1. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [CrossRef]
2. Kitahara, C.M.; Sosa, J.A. The changing incidence of thyroid cancer. Nat. Rev. Endocrinol. 2016, 12, 646–653.
3. Fagin, J.A.; Wells, S.A., Jr. Biologic and Clinical Perspectives on Thyroid Cancer. N. Engl. J. Med. 2016, 375,1054–1067. [CrossRef] [PubMed]
10. Howell, G.M.; Hodak, S.P.; Yip, L. RAS mutations in thyroid cancer. Oncologist 2013, 18, 926–932. [CrossRef]
11. Raman, P.; Koenig, R.J. Pax-8-PPAR-gamma fusion protein in thyroid carcinoma. Nat. Rev. Endocrinol. 2014, 10, 616–623. [CrossRef] [PubMed]
12. Asa, S.L.; Ezzat, S. The epigenetic landscape of differentiated thyroid cancer. Mol. Cell. Endocrinol. 2017.
13. Accardo, G.; Conzo, G.; Esposito, D.; Gambardella, C.; Mazzella, M.; Castaldo, F.; Di Donna, C.; Polistena, A.; Avenia, N.; Colantuoni, V.; et al. Genetics of medullary thyroid cancer: An overview. Int. J. Surg. 2017, 41, S2–S6. [CrossRef] [PubMed]
14. Walrath, J.C.; Hawes, J.J.; Van Dyke, T.; Reilly, K.M. Genetically engineered mouse models in cancer research. Adv. Cancer Res. 2010, 106, 113–164. [PubMed]
15. Doyle, A.; McGarry, M.P.; Lee, N.A.; Lee, J.J. The construction of transgenic and gene knockout/knockin mouse models of human disease. Transgenic Res. 2012, 21, 327–349. [CrossRef] [PubMed]
17. Kirschner, L.S.; Qamri, Z.; Kari, S.; Ashtekar, A. Mouse models of thyroid cancer: A 2015 update. Mol. Cell. Endocrinol. 2016, 421, 18–27. [CrossRef] [PubMed]
18. Vitale, G.; Gaudenzi, G.; Circelli, L.; Manzoni, M.F.; Bassi, A.; Fioritti, N.; Faggiano, A.; Colao, A. Animal models of medullary thyroid cancer: State of the art and view to the future. Endocr. Relat. Cancer 2017, 24, R1–R12. [CrossRef] [PubMed]
19. Li, D.D.; Zhang, Y.F.; Xu, H.X.; Zhang, X.P. The role of BRAF in the pathogenesis of thyroid carcinoma. Front. Biosci. 2015, 20, 1068–1078.
20. Knauf, J.A.; Ma, X.; Smith, E.P.; Zhang, L.; Mitsutake, N.; Liao, X.H.; Refetoff, S.; Nikiforov, Y.E.; Fagin, J.A. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res. 2005, 65, 4238–4245. [CrossRef] [PubMed] Int. J. Mol. Sci. 2017, 18, 2731 15 of 18
21. Chakravarty, D.; Santos, E.; Ryder, M.; Knauf, J.A.; Liao, X.H.; West, B.L.; Bollag, G.; Kolesnick, R.; Thin, T.H.; Rosen, N.; et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J. Clin. Investig. 2011, 121, 4700–4711. [CrossRef [PubMed]
22. Russell, J.P.; Powell, D.J.; Cunnane, M.; Greco, A.; Portella, G.; Santoro, M.; Fusco, A.; Rothstein, J.L. The TRK-T1 fusion protein induces neoplastic transformation of thyroid epithelium. Oncogene 2000, 19, 5729–5735. [CrossRef] [PubMed]
23. Cunha, L.L.; Marcello, M.A.; Ward, L.S. The role of the inflammatory microenvironment in thyroid carcinogenesis. Endocr. Relat. Cancer 2014, 21, R85–R103. [CrossRef] [PubMed]
24. Taylor, E.; Heyland, A. Evolution of thyroid hormone signaling in animals: Non-genomic and genomic modes of action. Mol. Cell. Endocrinol. 2017. [CrossRef] [PubMed]
25. Suzuki, H.; Willingham, M.C.; Cheng, S.Y. Mice with a mutation in the thyroid hormone receptor beta gene spontaneously develop thyroid carcinoma: A mouse model of thyroid carcinogenesis. Thyroid 2002, 12, 963–969. [CrossRef] [PubMed]
26. Kato, Y.; Ying, H.; Willingham, M.C.; Cheng, S.Y. A tumor suppressor role for thyroid hormone beta receptor in a mouse model of thyroid carcinogenesis. Endocrinology 2004, 145, 4430–4438. [CrossRef] [PubMed]
27. Kaneshige, M.; Kaneshige, K.; Zhu, X.; Dace, A.; Garrett, L.; Carter, T.A.; Kazlauskaite, R.; Pankratz, D.G.; Wynshaw-Boris, A.; Refetoff, S.; et al. Mice with a targeted mutation in the thyroid hormone beta receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc. Natl. Acad. Sci. USA 2000, 97, 13209–13214. [CrossRef] [PubMed]
28. Velez-Cruz, R.; Johnson, D.G. The Retinoblastoma (RB) Tumor Suppressor: Pushing Back against Genome Instability on Multiple Fronts. Int. J. Mol. Sci. 2017, 18. [CrossRef] [PubMed]
29. Williams, B.O.; Remington, L.; Albert, D.M.; Mukai, S.; Bronson, R.T.; Jacks, T. Cooperative tumorigenic effects of germline mutations in Rb and p53. Nat. Genet. 1994, 7, 480–484. [CrossRef] [PubMed]
31. Harvey, M.; Vogel, H.; Lee, E.Y.; Bradley, A.; Donehower, L.A. Mice deficient in both p53 and Rb develop tumors primarily of endocrine origin. Cancer Res. 1995, 55, 1146–1151. [PubMed]
32. Kim, C.S.; Zhu, X. Lessons from mouse models of thyroid cancer. Thyroid 2009, 19, 1317–1331. [CrossRef]
33. Antonello, Z.A.; Nucera, C. Orthotopic mouse models for the preclinical and translational study of targeted therapies against metastatic human thyroid carcinoma with BRAF(V600E) or wild-type BRAF. Oncogene 2014, 33, 5397–5404. [CrossRef] [PubMed]
34. Greco, A.; Albanese, S.; Auletta, L.; Mirabelli, P.; Zannetti, A.; D’Alterio, C.; Di Maro, G.; Orlandella, F.M.; Salvatore, G.; Soricelli, A.; et al. High-Frequency Ultrasound-Guided Injection for the Generation of a Novel
35. Kim, S.; Park, Y.W.; Schiff, B.A.; Doan, D.D.; Yazici, Y.; Jasser, S.A.; Younes, M.; Mandal, M.; Bekele, B.N.; Myers, J.N. An orthotopic model of anaplastic thyroid carcinoma in athymic nude mice. Clin. Cancer Res. 2005, 11, 1713–1721. [CrossRef] [PubMed]
37. Nucera, C.; Nehs, M.A.; Mekel, M.; Zhang, X.; Hodin, R.; Lawler, J.; Nose, V.; Parangi, S. A novel orthotopic mouse model of human anaplastic thyroid carcinoma. Thyroid 2009, 19, 1077–1084. [CrossRef] [PubMed]
38. Todaro, M.; Iovino, F.; Eterno, V.; Cammareri, P.; Gambara, G.; Espina, V.; Gulotta, G.; Dieli, F.; Giordano, S.; De Maria, R.; et al. Tumorigenic and metastatic activity of human thyroid cancer stem cells. Cancer Res. 2010, 70, 8874–8885. [CrossRef] [PubMed]
39. Tran Cao, H.S.; Kaushal, S.; Snyder, C.S.; Ongkeko, W.M.; Hoffman, R.M.; Bouvet, M. Real-time imaging of tumor progression in a fluorescent orthotopic mouse model of thyroid cancer. Anticancer Res. 2010, 30, 4415–4422. [PubMed]
40. Gule, M.K.; Chen, Y.; Sano, D.; Frederick, M.J.; Zhou, G.; Zhao, M.; Milas, Z.L.; Galer, C.E.; Henderson, Y.C.; Jasser, S.A.; et al. Targeted therapy of VEGFR2 and EGFR significantly inhibits growth of anaplastic thyroid cancer in an orthotopic murine model. Clin. Cancer Res. 2011, 17, 2281–2291. [CrossRef] [PubMed]
41. Buther, K.; Compeer, M.G.; De Mey, J.G.; Schober, O.; Schafers, M.; Bremer, C.; Riemann, B.; Holtke, C. Assessment of endothelin-A receptor expression in subcutaneous and orthotopic thyroid carcinoma xenografts in vivo employing optical imaging methods. Endocrinology 2012, 153, 2907–2918. [CrossRef]
42. Morrison, J.A.; Pike, L.A.; Lund, G.; Zhou, Q.; Kessler, B.E.; Bauerle, K.T.; Sams, S.B.; Haugen, B.R.; Schweppe, R.E. Characterization of thyroid cancer cell lines in murine orthotopic and intracardiac metastasis models. Horm. Cancer 2015, 6, 87–99. [CrossRef] [PubMed]
43. Zhou, M.; Chen, Y.; Adachi, M.; Wen, X.; Erwin, B.; Mawlawi, O.; Lai, S.Y.; Li, C. Single agent nanoparticle for radiotherapy and radio-photothermal therapy in anaplastic thyroid cancer. Biomaterials 2015, 57, 41–49.
44. Liu, Y.; Gunda, V.; Zhu, X.; Xu, X.; Wu, J.; Askhatova, D.; Farokhzad, O.C.; Parangi, S.; Shi, J. Theranostic near-infrared fluorescent nanoplatform for imaging and systemic siRNA delivery to metastatic anaplastic thyroid cancer. Proc. Natl. Acad. Sci. USA 2016, 113, 7750–7755. [CrossRef] [PubMed]
45. Reeb, A.N.; Ziegler, A.; Lin, R.Y. Characterization of human follicular thyroid cancer cell lines in preclinical mouse models. Endocr. Connect. 2016, 5, 47–54. [CrossRef] [PubMed]
46. Mo, J.H.; Choi, I.J.; Jeong, W.J.; Jeon, E.H.; Ahn, S.H. HIF-1alpha and HSP90: Target molecules selected from a tumorigenic papillary thyroid carcinoma cell line. Cancer Sci. 2012, 103, 464–471. [CrossRef] [PubMed]
47. Nehs, M.A.; Nucera, C.; Nagarkatti, S.S.; Sadow, P.M.; Morales-Garcia, D.; Hodin, R.A.; Parangi, S. Late intervention with anti-BRAF(V600E) therapy induces tumor regression in an orthotopic mouse model of
48. Yang, Y.J.; Na, H.J.; Suh, M.J.; Ban, M.J.; Byeon, H.K.; Kim, W.S.; Kim, J.W.; Choi, E.C.; Kwon, H.J.; Chang, J.W.; et al. Hypoxia Induces Epithelial-Mesenchymal Transition in Follicular Thyroid Cancer: Involvement of Regulation of Twist by Hypoxia Inducible Factor-1alpha. Yonsei Med. J. 2015, 56, 1503–1514.
50. Jauregui-Osoro, M.; Sunassee, K.; Weeks, A.J.; Berry, D.J.; Paul, R.L.; Cleij, M.; Banga, J.P.; O’Doherty, M.J.; Marsden, P.K.; Clarke, S.E.; et al. Synthesis and biological evaluation of [18F]tetrafluoroborate: A PET imaging agent for thyroid disease and reporter gene imaging of the sodium/iodide symporter. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 2108–2116. [CrossRef] [PubMed]
51. Maschauer, S.; Michel, K.; Tripal, P.; Buther, K.; Kuwert, T.; Schober, O.; Kopka, K.; Riemann, B.; Prante, O. Synthesis and in vivo evaluation of an 18F-labeled glycoconjugate of PD156707 for imaging ETA receptor expression in thyroid carcinoma by positron emission tomography. Am. J. Nucl. Med. Mol. Imaging 2013, 3,
52. D’Alessandria, C.; Braesch-Andersen, S.; Bejo, K.; Reder, S.; Blechert, B.; Schwaiger, M.; Bartolazzi, A. Noninvasive In Vivo Imaging and Biologic Characterization of Thyroid Tumors by ImmunoPET Targeting of Galectin-3. Cancer Res. 2016, 76, 3583–3592. [CrossRef] [PubMed]
53. Liu, Q.; Pang, H.; Hu, X.; Li, W.; Xi, J.; Xu, L.; Zhou, J. Construction of human single-chain variable fragment antibodies of medullary thyroid carcinoma and single photon emission computed tomography/computed tomography imaging in tumor-bearing nude mice. Oncol. Rep. 2016, 35, 171–178. [CrossRef] [PubMed]
54. Yin, A.; Wang, C.; Sun, J.; Gao, J.; Tao, L.; Du, X.; Zhao, H.; Yang, J.; Li, Y. Overexpression of NDRG2 Increases Iodine Uptake and Inhibits Thyroid Carcinoma Cell Growth In Situ and In Vivo. Oncol. Res. 2016, 23, 43–51.
55. Ke, C.-C.; He, Z.-M.; Hsieh, Y.-J.; Huang, C.-W.; Li, J.-J.; Hwu, L.; Chen, Y.-A.; Yang, B.-H.; Chang, C.-W.; Huang, W.-S.; et al. Quantitative Measurement of the Thyroid Uptake Function of Mouse by Cerenkov Luminescence Imaging. Sci. Rep. 2017, 7. [CrossRef] [PubMed]
56. Jeong, S.Y.; Hwang, M.H.; Kim, J.E.; Kang, S.; Park, J.C.; Yoo, J.; Ha, J.H.; Lee, S.W.; Ahn, B.C.; Lee, J. Combined Cerenkov luminescence and nuclear imaging of radioiodine in the thyroid gland and thyroid cancer cells expressing sodium iodide symporter: Initial feasibility study. Endocr. J. 2011, 58, 575–583.
58. Orosco, R.K.; Savariar, E.N.; Weissbrod, P.A.; Diaz-Perez, J.A.; Bouvet, M.; Tsien, R.Y.; Nguyen, Q.T. Molecular targeting of papillary thyroid carcinoma with fluorescently labeled ratiometric activatable cell penetrating peptides in a transgenic murine model. J. Surg. Oncol. 2016, 113, 138–143. [CrossRef] [PubMed]
59. Mancini, M.; Vergara, E.; Salvatore, G.; Greco, A.; Troncone, G.; Affuso, A.; Liuzzi, R.; Salerno, P.; Scotto di Santolo, M.; Santoro, M.; et al. Morphological ultrasound microimaging of thyroid in living mice. Endocrinology 2009, 150, 4810–4815. [CrossRef] [PubMed]
60. Lavarello, R.J.; Ridgway, W.R.; Sarwate, S.S.; Oelze, M.L. Characterization of thyroid cancer in mouse models using high-frequency quantitative ultrasound techniques. Ultrasound Med. Biol. 2013, 39, 2333–2341.
61. Mancini, M.; Greco, A.; Salvatore, G.; Liuzzi, R.; Di Maro, G.; Vergara, E.; Chiappetta, G.; Pasquinelli, R.; Brunetti, A.; Salvatore, M. Imaging of thyroid tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice. BMC Med. Imaging 2013, 13. [CrossRef] [PubMed]
62. Zhou, L.; Zhang, M.; Fu, Q.; Li, J.; Sun, H. Targeted near infrared hyperthermia combined with immune stimulation for optimized therapeutic efficacy in thyroid cancer treatment. Oncotarget 2016, 7, 6878–6890.
64. Buscombe, J.R. Radionuclides in the management of thyroid cancer. Cancer Imaging 2007, 7, 202–209.
65. Buscombe, J.; Hirji, H.; Witney-Smith, C. Nuclear medicine in the management of thyroid disease. Expert Rev. Anticancer Ther. 2008, 8, 1425–1431. [CrossRef] [PubMed]
66. Perron, B.; Rodriguez, A.M.; Leblanc, G.; Pourcher, T. Cloning of the mouse sodium iodide symporter and its expression in the mammary gland and other tissues. J. Endocrinol. 2001, 170, 185–196. [CrossRef] [PubMed]
67. Ahn, B.C. Personalized Medicine Based on Theranostic Radioiodine Molecular Imaging for Differentiated
68. Groot-Wassink, T.; Aboagye, E.O.; Glaser, M.; Lemoine, N.R.; Vassaux, G. Adenovirus biodistribution and noninvasive imaging of gene expression in vivo by positron emission tomography using human
69. Rao, B.; Zhang, R.; Li, L.; Shao, J.Y.; Wang, L.V. Photoacoustic imaging of voltage responses beyond the optical diffusion limit. Sci. Rep. 2017, 7. [CrossRef] [PubMed]
70. Greco, A.; Albanese, S.; Auletta, L.; De Carlo, F.; Salvatore, M.; Howard, C.M.; Claudio, P.P. Advances in molecular preclinical therapy mediated by imaging. Q. J. Nucl. Med. Mol. Imaging 2017, 61, 76–94. [PubMed]
71. Padhani, A.R.; Liu, G.; Mu-Koh, D.; Chenevert, T.L.; Thoeny, H.C.; Takahara, T.; Dzik-Jurasz, A.; Ross, B.D.; Van Cauteren, M.; Collins, D.; et al. Diffusion-Weighted Magnetic Resonance Imaging as a Cancer Biomarker: Consensus and Recommendations. Neoplasia 2009, 11, 102–125. [CrossRef] [PubMed]
72. Chen, Z.-Y.; Wang, Y.-X.; Lin, Y.; Zhang, J.-S.; Yang, F.; Zhou, Q.-L.; Liao, Y.-Y. Advance of Molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy. BioMed Res. Int. 2014, 2014. [CrossRef]
73. Cui, Y.; Zhang, C.; Li, X.; Liu, H.; Yin, B.; Xu, T.; Zhang, Y.; Wang, D. Intravoxel Incoherent Motion Di usion-weighted Magnetic Resonance Imaging for Monitoring the Early Response to ZD6474 from Nasopharyngeal Carcinoma in Nude Mouse. Sci. Rep. 2015, 5. [CrossRef] [PubMed]
74. Foroutan, P.; Kreahling, J.M.; Morse, D.L.; Grove, O.; Lloyd, M.C.; Reed, D.; Raghavan, M.; Altiok, S.; Martinez, G.V.; Gillies, R.J. Diffusion MRI and Novel Texture Analysis in Osteosarcoma Xenotransplants Predicts Response to Anti-Checkpoint Therapy. PLoS ONE 2013, 8, e82875. [CrossRef] [PubMed]
76. Schob, S.; Voigt, P.; Bure, L.; Meyer, H.-J.; Wickenhauser, C.; Behrmann, C.; Höhn, A.; Kachel, P.; Dralle, H.; Hoffmann, K.-T.; et al. Diffusion-Weighted Imaging Using a Readout-Segmented, Multishot EPI Sequence at 3 T Distinguishes between Morphologically Differentiated and Undifferentiated Subtypes of Thyroid Carcinoma—A Preliminary Study. Transl. Oncol. 2016, 9, 403–410. [CrossRef] [PubMed]
77. Shi, R.-Y.; Yao, Q.-Y.; Zhou, Q.-Y.; Lu, Q.; Suo, S.-T.; Chen, J.; Zheng, W.-J.; Dai, Y.-M.; Wu, L.-M.; Xu, J.-R. Preliminary study of diffusion kurtosis imaging in thyroid nodules and its histopathologic correlation. Eur. Radiol. 2017, 27, 4710–4720. [CrossRef] [PubMed]
78. Auletta, L.; Gramanzini, M.; Gargiulo, S.; Albanese, S.; Salvatore, M.; Greco, A. Advances in multimodal molecular imaging. Q. J. Nucl. Med. Mol. Imaging 2017, 61, 19–32. [PubMed]
79. Guernet, A.; Grumolato, L. CRISPR/Cas9 editing of the genome for cancer modeling. Methods 2017, 121–122, 130–137. [CrossRef] [PubMed]
80. Platt, R.J.; Chen, S.; Zhou, Y.; Yim, M.J.; Swiech, L.; Kempton, H.R.; Dahlman, J.E.; Parnas, O.; Eisenhaure, T.M.; Jovanovic, M.; et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 2014, 159, 440–455. [CrossRef] [PubMed]
Siegel, R.L., Miller, K.D., Jemal, A., Cancer Statistics, 2017 (2017) CA Cancer J. Clin, 67, pp. 7-30. , [CrossRef] [PubMed
Kitahara, C.M., Sosa, J.A., The changing incidence of thyroid cancer (2016) Nat. Rev. Endocrinol, 12, pp. 646-653. , [CrossRef] [PubMed]
Fagin, J.A., Wells, S.A., Jr., Biologic and Clinical Perspectives on Thyroid Cancer (2016) N. Engl. J. Med, 375, pp. 1054-1067. , [CrossRef] [PubMed]
Dralle, H., Machens, A., Basa, J., Fatourechi, V., Franceschi, S., Hay, I.D., Nikiforov, Y.E., Sherman, S.I., Follicular cell-derived thyroid cancer (2015) Nat. Rev. Dis. Primers, p. 1. , [CrossRef] [PubMed]
Nikiforov, Y.E., Nikiforova, M.N., Molecular genetics and diagnosis of thyroid cancer (2011) Nat. Rev. Endocrinol, 7, pp. 569-580. , [CrossRef] [PubMed]
Molinaro, E., Romei, C., Biagini, A., Sabini, E., Agate, L., Mazzeo, S., Materazzi, G., Torregrossa, L., Anaplastic thyroid carcinoma: From clinicopathology to genetics and advanced therapies (2017) Nat. Rev. Endocrinol, 13, pp. 644-660. , [CrossRef] [PubMed]
Xu, B., Ghossein, R., Genomic Landscape of poorly Differentiated and Anaplastic Thyroid Carcinoma (2016) Endocr. Pathol, 27, pp. 205-212. , [CrossRef] [PubMed]
Maia, A.L., Wajner, S.M., Vargas, C.V., Advances and controversies in the management of medullary thyroid carcinoma (2017) Curr. Opin. Oncol, 29, pp. 25-32. , [CrossRef] [PubMed]
Agrawal, N., Akbani, R., Aksoy, B.A., Ally, A., Arachchi, H., Asa, S.L., Auman, J.T., Baylin, S.B., Integrated genomic characterization of papillary thyroid carcinoma (2014) Cell, 159, pp. 676-690. , [CrossRef] [PubMed]
Howell, G.M., Hodak, S.P., Yip, L., RAS mutations in thyroid cancer (2013) Oncologist, 18, pp. 926-932. , [CrossRef] [PubMed]
Raman, P., Koenig, R.J., Pax-8-PPAR-gamma fusion protein in thyroid carcinoma (2014) Nat. Rev. Endocrinol, 10, pp. 616-623. , [CrossRef] [PubMed]
Asa, S.L., Ezzat, S., The epigenetic landscape of differentiated thyroid cancer (2017) Mol. Cell. Endocrinol, , [CrossRef] [PubMed]
Accardo, G., Conzo, G., Esposito, D., Gambardella, C., Mazzella, M., Castaldo, F., Di Donna, C., Colantuoni, V., Genetics of medullary thyroid cancer: An overview (2017) Int. J. Surg, 41, pp. S2-S6. , [CrossRef] [PubMed]
Walrath, J.C., Hawes, J.J., Van Dyke, T., Reilly, K.M., Genetically engineered mouse models in cancer research (2010) Adv. Cancer Res, 106, pp. 113-164. , [PubMed]
Doyle, A., McGarry, M.P., Lee, N.A., Lee, J.J., The construction of transgenic and gene knockout/knockin mouse models of human disease (2012) Transgenic Res, 21, pp. 327-349. , [CrossRef] [PubMed]
Rusinek, D., Krajewska, J., Jarzab, M., Mouse models of papillary thyroid carcinoma—Short review (2016) Endokrynol. Pol, 67, pp. 212-223. , [CrossRef] [PubMed]
Kirschner, L.S., Qamri, Z., Kari, S., Ashtekar, A., Mousemodels of thyroid cancer: A2015 update (2016) Mol. Cell. Endocrinol, 421, pp. 18-27. , [CrossRef] [PubMed]
Vitale, G., Gaudenzi, G., Circelli, L., Manzoni, M.F., Bassi, A., Fioritti, N., Faggiano, A., Colao, A., Animal models of medullary thyroid cancer: State of the art and view to the future (2017) Endocr. Relat. Cancer, 24, pp. RR1-R12. , [CrossRef] [PubMed]
Li, D.D., Zhang, Y.F., Xu, H.X., Zhang, X.P., The role of BRAF in the pathogenesis of thyroid carcinoma (2015) Front. Biosci, 20, pp. 1068-1078
Knauf, J.A., Ma, X., Smith, E.P., Zhang, L., Mitsutake, N., Liao, X.H., Refetoff, S., Fagin, J.A., Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation (2005) Cancer Res, 65, pp. 4238-4245. , [CrossRef] [PubMed]
Chakravarty, D., Santos, E., Ryder, M., Knauf, J.A., Liao, X.H., West, B.L., Bollag, G., Rosen, N., Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation (2011) J. Clin. Investig, 121, pp. 4700-4711. , [CrossRef] [PubMed]
Russell, J.P., Powell, D.J., Cunnane, M., Greco, A., Portella, G., Santoro, M., Fusco, A., Rothstein, J.L., The TRK-T1 fusion protein induces neoplastic transformation of thyroid epithelium (2000) Oncogene, 19, pp. 5729-5735. , [CrossRef] [PubMed]
Cunha, L.L., Marcello, M.A., Ward, L.S., The role of the inflammatory microenvironment in thyroid carcinogenesis (2014) Endocr. Relat. Cancer, 21, pp. RR85-R103. , [CrossRef] [PubMed]
Taylor, E., Heyland, A., Evolution of thyroid hormone signaling in animals: Non-genomic and genomic modes of action (2017) Mol. Cell. Endocrinol, , [CrossRef] [PubMed]
Suzuki, H., Willingham, M.C., Cheng, S.Y., Mice with a mutation in the thyroid hormone receptor beta gene spontaneously develop thyroid carcinoma: A mouse model of thyroid carcinogenesis (2002) Thyroid, 12, pp. 963-969. , [CrossRef] [PubMed]
Kato, Y., Ying, H., Willingham, M.C., Cheng, S.Y., A tumor suppressor role for thyroid hormone beta receptor in a mouse model of thyroid carcinogenesis (2004) Endocrinology, 145, pp. 4430-4438. , [CrossRef] [PubMed]
Kaneshige, M., Kaneshige, K., Zhu, X., Dace, A., Garrett, L., Carter, T.A., Kazlauskaite, R., Refetoff, S., Mice with a targeted mutation in the thyroid hormone beta receptor gene exhibit impaired growth and resistance to thyroid hormone (2000) Proc. Natl. Acad. Sci. USA, 97. , [CrossRef] [PubMed]
Velez-Cruz, R., Johnson, D.G., The Retinoblastoma (RB) Tumor Suppressor: Pushing Back against Genome Instability on Multiple Fronts (2017) Int. J. Mol. Sci, p. 18. , [CrossRef] [PubMed]
Williams, B.O., Remington, L., Albert, D.M., Mukai, S., Bronson, R.T., Jacks, T., Cooperative tumorigenic effects of germline mutations in Rb and p53 (1994) Nat. Genet, 7, pp. 480-484. , [CrossRef] [PubMed]
Harvey, M., Vogel, H., Lee, E.Y., Bradley, A., Donehower, L.A., Mice deficient in both p53 and Rb develop tumors primarily of endocrine origin (1995) Cancer Res, 55, pp. 1146-1151. , [PubMed]
Kim, C.S., Zhu, X., Lessons from mouse models of thyroid cancer (2009) Thyroid, 19, pp. 1317-1331. , [CrossRef] [PubMed]
Antonello, Z.A., Nucera, C., Orthotopic mouse models for the preclinical and translational study of targeted therapies against metastatic human thyroid carcinoma with BRAF(V600E) or wild-type BRAF (2014) Oncogene, 33, pp. 5397-5404. , [CrossRef] [PubMed]
Greco, A., Albanese, S., Auletta, L., Mirabelli, P., Zannetti, A., D’Alterio, C., Di Maro, G., Soricelli, A., High-Frequency Ultrasound-Guided Injection for the Generation of a Novel Orthotopic Mouse Model of Human Thyroid Carcinoma (2016) Thyroid, 26, pp. 552-558. , [CrossRef] [PubMed]
Kim, S., Park, Y.W., Schiff, B.A., Doan, D.D., Yazici, Y., Jasser, S.A., Younes, M., Myers, J.N., An orthotopic model of anaplastic thyroid carcinoma in athymic nude mice (2005) Clin. Cancer Res, 11, pp. 1713-1721. , [CrossRef] [PubMed]
Ahn, S.H., Henderson, Y., Kang, Y., Chattopadhyay, C., Holton, P., Wang, M., Briggs, K., Clayman, G.L., An orthotopic model of papillary thyroid carcinoma in athymic nude mice. Arch. Otolaryngol (2008) Head Neck Surg, 134, pp. 190-197. , [CrossRef] [PubMed]
Nucera, C., Nehs, M.A., Mekel, M., Zhang, X., Hodin, R., Lawler, J., Nose, V., Parangi, S., A novel orthotopic mouse model of human anaplastic thyroid carcinoma (2009) Thyroid, 19, pp. 1077-1084. , [CrossRef] [PubMed]
Todaro, M., Iovino, F., Eterno, V., Cammareri, P., Gambara, G., Espina, V., Gulotta, G., De Maria, R., Tumorigenic and metastatic activity of human thyroid cancer stem cells (2010) Cancer Res, 70, pp. 8874-8885. , [CrossRef] [PubMed]
Tran Cao, H.S., Kaushal, S., Snyder, C.S., Ongkeko, W.M., Hoffman, R.M., Bouvet, M., Real-time imaging of tumor progression in a fluorescent orthotopic mouse model of thyroid cancer (2010) Anticancer Res, 30, pp. 4415-4422. , [PubMed]
Gule, M.K., Chen, Y., Sano, D., Frederick, M.J., Zhou, G., Zhao, M., Milas, Z.L., Jasser, S.A., Targeted therapy of VEGFR2 and EGFR significantly inhibits growth of anaplastic thyroid cancer in an orthotopic murine model (2011) Clin. Cancer Res, 17, pp. 2281-2291. , [CrossRef] [PubMed]
Buther, K., Compeer, M.G., De Mey, J.G., Schober, O., Schafers, M., Bremer, C., Riemann, B., Holtke, C., Assessment of endothelin-A receptor expression in subcutaneous and orthotopic thyroid carcinoma xenografts in vivo employing optical imaging methods (2012) Endocrinology, 153, pp. 2907-2918. , [CrossRef] [PubMed]
Morrison, J.A., Pike, L.A., Lund, G., Zhou, Q., Kessler, B.E., Bauerle, K.T., Sams, S.B., Schweppe, R.E., Characterization of thyroid cancer cell lines in murine orthotopic and intracardiac metastasis models (2015) Horm. Cancer, 6, pp. 87-99. , [CrossRef] [PubMed]
Zhou, M., Chen, Y., Adachi, M., Wen, X., Erwin, B., Mawlawi, O., Lai, S.Y., Li, C., Single agent nanoparticle for radiotherapy and radio-photothermal therapy in anaplastic thyroid cancer (2015) Biomaterials, 57, pp. 41-49. , [CrossRef] [PubMed]
Liu, Y., Gunda, V., Zhu, X., Xu, X., Wu, J., Askhatova, D., Farokhzad, O.C., Parangi, S., Shi, J. Theranostic near-infrared fluorescent nanoplatform for imaging and systemic siRNA delivery to metastatic anaplastic thyroid cancer (2016) Proc. Natl. Acad. Sci. USA, 113, pp. 7750-7755. , [CrossRef] [PubMed]
Reeb, A.N., Ziegler, A., Lin, R.Y., Characterization of human follicular thyroid cancer cell lines in preclinical mouse models (2016) Endocr. Connect, 5, pp. 47-54. , [CrossRef] [PubMed]
Mo, J.H., Choi, I.J., Jeong, W.J., Jeon, E.H., Ahn, S.H., HIF-1alpha and HSP90: Target molecules selected from a tumorigenic papillary thyroid carcinoma cell line (2012) Cancer Sci, 103, pp. 464-471. , [CrossRef] [PubMed]
Nehs, M.A., Nucera, C., Nagarkatti, S.S., Sadow, P.M., Morales-Garcia, D., Hodin, R.A., Parangi, S., Late intervention with anti-BRAF(V600E) therapy induces tumor regression in an orthotopic mouse model of human anaplastic thyroid cancer (2012) Endocrinology, 153, pp. 985-994. , [CrossRef] [PubMed]
Yang, Y.J., Na, H.J., Suh, M.J., Ban, M.J., Byeon, H.K., Kim, W.S., Kim, J.W., Chang, J.W., Hypoxia Induces Epithelial-Mesenchymal Transition in Follicular Thyroid Cancer: Involvement of Regulation of Twist by Hypoxia Inducible Factor-1alpha (2015) Yonsei Med. J, 56, pp. 1503-1514. , [CrossRef] [PubMed]
Tentler, J.J., Tan, A.C., Weekes, C.D., Jimeno, A., Leong, S., Pitts, T.M., Arcaroli, J.J., Eckhardt, S.G., Patient-derived tumour xenografts as models for oncology drug development. Nat (2012) Rev. Clin. Oncol, 9, pp. 338-350. , [CrossRef] [PubMed]
Jauregui-Osoro, M., Sunassee, K., Weeks, A.J., Berry, D.J., Paul, R.L., Cleij, M., Banga, J.P., Clarke, S.E., Synthesis and biological evaluation of [18F]tetrafluoroborate: A PET imaging agent for thyroid disease and reporter gene imaging of the sodium/iodide symporter (2010) Eur. J. Nucl. Med. Mol. Imaging, 37, pp. 2108-2116. , [CrossRef] [PubMed]
Maschauer, S., Michel, K., Tripal, P., Buther, K., Kuwert, T., Schober, O., Kopka, K., Prante, O., Synthesis and in vivo evaluation of an 18F-labeled glycoconjugate of PD156707 for imaging ETA receptor expression in thyroid carcinoma by positron emission tomography (2013) Am. J. Nucl. Med. Mol. Imaging, 3, pp. 425-436. , [PubMed]
D’Alessandria, C., Braesch-Andersen, S., Bejo, K., Reder, S., Blechert, B., Schwaiger, M., Bartolazzi, A., Noninvasive In Vivo Imaging and Biologic Characterization of Thyroid Tumors by ImmunoPET Targeting of Galectin-3 (2016) Cancer Res, 76, pp. 3583-3592. , [CrossRef] [PubMed]
Liu, Q., Pang, H., Hu, X., Li, W., Xi, J., Xu, L., Zhou, J., Construction of human single-chain variable fragment antibodies of medullary thyroid carcinoma and single photon emission computed tomography/computed tomography imaging in tumor-bearing nude mice (2016) Oncol. Rep., 35, pp. 171-178. , [CrossRef] [PubMed]
Yin, A., Wang, C., Sun, J., Gao, J., Tao, L., Du, X., Zhao, H., Li, Y., Overexpression of NDRG2 Increases Iodine Uptake and Inhibits Thyroid Carcinoma Cell Growth In Situ and In Vivo (2016) Oncol. Res, 23, pp. 43-51. , [CrossRef] [PubMed]
Ke, C.-C., He, Z.-M., Hsieh, Y.-J., Huang, C.-W., Li, J.-J., Hwu, L., Chen, Y.-A., Huang, W.-S., Quantitative Measurement of the Thyroid Uptake Function of Mouse by Cerenkov Luminescence Imaging (2017) Sci. Rep, p. 7. , [CrossRef] [PubMed]
Jeong, S.Y., Hwang, M.H., Kim, J.E., Kang, S., Park, J.C., Yoo, J., Ha, J.H., Lee, J., Combined Cerenkov luminescence and nuclear imaging of radioiodine in the thyroid gland and thyroid cancer cells expressing sodium iodide symporter: Initial feasibility study (2011) Endocr. J., 58, pp. 575-583. , [CrossRef] [PubMed]
Levi, J., Kothapalli, S.R., Bohndiek, S., Yoon, J.K., Dragulescu-Andrasi, A., Nielsen, C., Tisma, A., Yan, X., Molecular photoacoustic imaging of follicular thyroid carcinoma (2013) Clin. Cancer Res, 19, pp. 1494-1502. , [CrossRef] [PubMed]
Orosco, R.K., Savariar, E.N., Weissbrod, P.A., Diaz-Perez, J.A., Bouvet, M., Tsien, R.Y., Nguyen, Q.T., Molecular targeting of papillary thyroid carcinoma with fluorescently labeled ratiometric activatable cell penetrating peptides in a transgenic murine model (2016) J. Surg. Oncol., 113, pp. 138-143. , [CrossRef] [PubMed]
Mancini, M., Vergara, E., Salvatore, G., Greco, A., Troncone, G., Affuso, A., Liuzzi, R., Santoro, M., Morphological ultrasound microimaging of thyroid in living mice (2009) Endocrinology, 150, pp. 4810-4815. , [CrossRef] [PubMed]
Lavarello, R.J., Ridgway, W.R., Sarwate, S.S., Oelze, M.L., Characterization of thyroid cancer in mouse models using high-frequency quantitative ultrasound techniques (2013) Ultrasound Med. Biol, 39, pp. 2333-2341. , [CrossRef] [PubMed]
Mancini, M., Greco, A., Salvatore, G., Liuzzi, R., Di Maro, G., Vergara, E., Chiappetta, G., Salvatore, M., Imaging of thyroid tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice (2013) BMC Med. Imaging, p. 13. , [CrossRef] [PubMed]
Zhou, L., Zhang, M., Fu, Q., Li, J., Sun, H., Targeted near infrared hyperthermia combined with immune stimulation for optimized therapeutic efficacy in thyroid cancer treatment (2016) Oncotarget, 7, pp. 6878-6890. , [CrossRef] [PubMed]
Chen, X., Zhu, H., Huang, X., Wang, P., Zhang, F., Li, W., Chen, G., Chen, B., Novel iodinated gold nanoclusters for precise diagnosis of thyroid cancer (2017) Nanoscale, 9, pp. 2219-2231. , [CrossRef] [PubMed]
Buscombe, J.R., Radionuclides in the management of thyroid cancer (2007) Cancer Imaging, 7, pp. 202-209. , [CrossRef] [PubMed]
Buscombe, J., Hirji, H., Witney-Smith, C., Nuclear medicine in the management of thyroid disease (2008) Expert Rev. Anticancer Ther., 8, pp. 1425-1431. , [CrossRef] [PubMed]
Perron, B., Rodriguez, A.M., Leblanc, G., Pourcher, T., Cloning of the mouse sodium iodide symporter and its expression in the mammary gland and other tissues (2001) J. Endocrinol, 170, pp. 185-196. , [CrossRef] [PubMed]
Ahn, B.C., Personalized Medicine Based on Theranostic Radioiodine Molecular Imaging for Differentiated Thyroid Cancer (2016) Biomed Res. Int, 2016. , [CrossRef] [PubMed]
Groot-Wassink, T., Aboagye, E.O., Glaser, M., Lemoine, N.R., Vassaux, G., Adenovirus biodistribution and noninvasive imaging of gene expression in vivo by positron emission tomography using human sodium/iodide symporter as reporter gene (2002) Hum. Gene Ther, 13, pp. 1723-1735. , [CrossRef] [PubMed]
Rao, B., Zhang, R., Li, L., Shao, J.Y., Wang, L.V., Photoacoustic imaging of voltage responses beyond the optical diffusion limit (2017) Sci. Rep, p. 7. , [CrossRef] [PubMed]
Padhani, A.R., Liu, G., Mu-Koh, D., Chenevert, T.L., Thoeny, H.C., Takahara, T., Dzik-Jurasz, A., Collins, D., Diffusion-Weighted Magnetic Resonance Imaging as a Cancer Biomarker: Consensus and Recommendations (2009) Neoplasia, 11, pp. 102-125. , [CrossRef] [PubMed]
Chen, Z.-Y., Wang, Y.-X., Lin, Y., Zhang, J.-S., Yang, F., Zhou, Q.-L., Liao, Y.-Y., Advance of Molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy (2014) Biomed Res. Int, 2014. , [CrossRef] [PubMed]
Cui, Y., Zhang, C., Li, X., Liu, H., Yin, B., Xu, T., Zhang, Y., Wang, D., Intravoxel Incoherent Motion Di usion-weighted Magnetic Resonance Imaging for Monitoring the Early Response to ZD6474 from Nasopharyngeal Carcinoma in Nude Mouse (2015) Sci. Rep, p. 5. , [CrossRef] [PubMed]
Foroutan, P., Kreahling, J.M., Morse, D.L., Grove, O., Lloyd, M.C., Reed, D., Raghavan, M., Gillies, R.J., Diffusion MRI and Novel Texture Analysis in Osteosarcoma Xenotransplants Predicts Response to Anti-Checkpoint Therapy (2013) Plos ONE, 8. , [CrossRef] [PubMed]
Bozgeyik, Z., Coskun, S., Dagli, A.F., Ozkan, Y., Sahpaz, F., Ogur, E., Diffusion-weighted MR imaging of thyroid nodules (2009) Neuroradiology, 51, pp. 193-198. , [CrossRef] [PubMed]
Schob, S., Voigt, P., Bure, L., Meyer, H.-J., Wickenhauser, C., Behrmann, C., Höhn, A., Hoffmann, K.-T., Diffusion-Weighted Imaging Using a Readout-Segmented, Multishot EPI Sequence at 3 T Distinguishes between Morphologically Differentiated and Undifferentiated Subtypes of Thyroid Carcinoma—A Preliminary Study (2016) Transl. Oncol., 9, pp. 403-410. , [CrossRef] [PubMed]
Shi, R.-Y., Yao, Q.-Y., Zhou, Q.-Y., Lu, Q., Suo, S.-T., Chen, J., Zheng, W.-J., Xu, J.-R., Preliminary study of diffusion kurtosis imaging in thyroid nodules and its histopathologic correlation (2017) Eur. Radiol, 27, pp. 4710-4720. , [CrossRef] [PubMed]
Auletta, L., Gramanzini, M., Gargiulo, S., Albanese, S., Salvatore, M., Greco, A., Advances in multimodal molecular imaging (2017) Q. J. Nucl. Med. Mol. Imaging, 61, pp. 19-32. , [PubMed]
Guernet, A., Grumolato, L., CRISPR/Cas9 editing of the genome for cancer modeling (2017) Methods, 121-122, pp. 130-137. , [CrossRef] [PubMed]
Platt, R.J., Chen, S., Zhou, Y., Yim, M.J., Swiech, L., Kempton, H.R., Dahlman, J.E., Jovanovic, M., CRISPR-Cas9 knockin mice for genome editing and cancer modeling (2014) Cell, 159, pp. 440-455. , [CrossRef] [PubMed]
Preclinical Imaging for the Study of Mouse Models of Thyroid Cancer
Abstract: Thyroid cancer, which represents the most common tumors among endocrine malignancies, comprises a wide range of neoplasms with different clinical aggressiveness. One of the most important challenges in research is to identify mouse models that most closely resemble human pathology;
other goals include finding a way to detect markers of disease that common to humans and mice and to identify the most appropriate and least invasive therapeutic strategies for specific tumor types.
Preclinical thyroid imaging includes a wide range of techniques that allow for morphological and functional characterization of thyroid disease as well as targeting and in most cases, this imaging allows quantitative analysis of the molecular pattern of the thyroid cancer. The aim of this review paper is to provide an overview of all of the imaging techniques used to date both for diagnosis and theranostic purposes in mouse models of thyroid cancer.
Preclinical Imaging for the Study of Mouse Models of Thyroid Cancer
Malvindi MA, Greco A, Conversano F, Figuerola A, Corti M, Bonora M, Lascialfari A, Doumari HA, Moscardini M, Cingolani R, Gigli G, Casciaro S, Pellegrino T, Ragusa A * MR Contrast Agents(292 views) Small Animal Imaging, 2011 Jul 8; 21(13): 2548-2555. Impact Factor:1.784 ViewExport to BibTeXExport to EndNote
Ntziachristos V, Cuénod CA, Fournier L, Balvay D, Pradel C, Siauve N, Clement O, Jouannot E, Lucidarme O, Vecchio SD, Salvatore M, Law B, Tung C-H, Jain RK, Fukumura D, Munn LL, Brown EB, Schellenberger E, Montet X, Weissleder R, Clerck ND, Postnov A * Tumor Imaging(350 views) Textbook Of In Vivo Imaging In Vertebrates (ISSN: 9780-4700), 2007 Jul 16; 1: 277-309. Impact Factor:1.148 ViewExport to BibTeXExport to EndNote