Immunometabolic profiling of patients with multiple sclerosis identifies new biomarkers to predict disease activity during treatment with interferon beta-1a
Immunometabolic profiling of patients with multiple sclerosis identifies new biomarkers to predict disease activity during treatment with interferon beta-1a(355 views) Lanzillo R, Carbone F, Quarantelli M, Bruzzese D, Carotenuto A, De RosaV, Colamatteo A, Micillo T, De Luca Picione C, Saccà F, De Rosa A, Moccia M, Brescia Morra V, Matarese G
Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Universita degli Studi di Napoli "Federico II", Napoli, Italy.
Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy.
Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Napoli, Italy.
Dipartimento di Sanita Pubblica, Universita degli Studi di Napoli "Federico II", Napoli, Italy.
Dipartimento di Biologia, Universita degli Studi di Napoli "Federico II", Napoli, Italy.
Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita degli Studi di Napoli "Federico II", Napoli, Italy. Electronic address: giuseppe.matarese@unina.it.
References: Lublin, F.D., Reingold, S.C., Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis (1996) Neurology, 46, pp. 907-91
Nylander, A., Hafler, D.A., Multiple sclerosis (2012) J. Clin. Invest., 122, pp. 1180-1188
Procaccini, C., Carbone, F., Di Silvestre, D., The proteomic landscape of human ex vivo regulatory and conventional T cells reveals specific metabolic requirements (2016) Immunity, 44, pp. 406-421
Zeng, H., Chi, H., Metabolic control of regulatory T cell development and function (2015) Trends Immunol., 36, pp. 3-12
Carbone, F., La Rocca, C., De Candia, P., Metabolic control of immune tolerance in health and autoimmunity (2016) Semin. Immunol., 28, pp. 491-504
Palavra, F., Almeida, L., Ambrósio, A.F., Reis, F., Obesity and brain inflammation: a focus on multiple sclerosis (2016) Obes. Rev., 17, pp. 211-224
Emamgholipour, S., Eshaghi, S.M., Hossein-nezhad, A., Mirzaei, K., Maghbooli, Z., Sahraian, M.A., Adipocytokine profile, cytokine levels and foxp3 expression in multiple sclerosis: a possible link to susceptibility and clinical course of disease (2013) PLoS One, 8
Matarese, G., Carrieri, P.B., La Cava, A., Leptin increase in multiple sclerosis associates with reduced number of CD4(+)CD25 + regulatory T cells (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 5150-5155
Carbone, F., De Rosa, V., Carrieri, P.B., Regulatory T cell proliferative potential is impaired in human autoimmune disease (2014) Nat. Med., 20, pp. 69-74
Munger, K.L., Chitnis, T., Ascherio, A., Body size and risk of MS in two cohorts of US women (2009) Neurology, 73, pp. 1543-1550
Mokry, L.E., Ross, S., Timpson, N.J., Sawcer, S., Davey Smith, G., Richards, J.B., Obesity and Multiple Sclerosis: a Mendelian Randomization Study (2016) PLoS Med., 13
Hedström, A.K., Lima Bomfim, I., Barcellos, L., Interaction between adolescent obesity and HLA risk genes in the etiology of multiple sclerosis (2014) Neurology, 82, pp. 865-872
Carrieri, P.B., Carbone, F., Perna, F., Longitudinal assessment of immuno-metabolic parameters in multiple sclerosis patients during treatment with glatiramer acetate (2015) Metabolism, 64, pp. 1112-1121
Poser, C.M., Brinar, V.V., Diagnostic criteria for multiple sclerosis (2001) Clin. Neurol. Neurosurg., 103, pp. 1-11
Polman, C.H., Reingold, S.C., Banwell, B., Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria (2011) Ann. Neurol., 69, pp. 292-302
Kurtzke, J.F., Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS) (1983) Neurology, 33, pp. 1444-1452
Scarpini, E., Galimberti, D., Baron, P., IP-10 and MCP-1 levels in CSF and serum from multiple sclerosis patients with different clinical subtypes of the disease (2002) J. Neurol. Sci., 195, pp. 41-46
Franciotta, D., Martino, G., Zardini, E., Serum and CSF levels of MCP-1 and IP-10 in multiple sclerosis patients with acute and stable disease and undergoing immunomodulatory therapies (2001) J. Neuroimmunol., 115, pp. 192-198
Samoilova, E.B., Horton, J.L., Hilliard, B., Liu, T.S., Chen, Y., IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: roles of IL-6 in the activation and differentiation of autoreactive T cells (1998) J. Immunol., 161, pp. 6480-6486
Serada, S., Fujimoto, M., Mihara, M., IL-6 blockade inhibits the induction of myelin antigen-specific Th17 cells and Th1 cells in experimental autoimmune encephalomyelitis (2008) Proc. Natl. Acad. Sci. U. S. A., 105, pp. 9041-9046
Chen, Y.C., Yang, X., Miao, L., Serum level of interleukin-6 in Chinese patients with multiple sclerosis (2012) J. Neuroimmunol., 249, pp. 109-111
Matarese, G., Di Giacomo, A., Sanna, V., Requirement for leptin in the induction and progression of autoimmune encephalomyelitis (2001) J. Immunol., 166, pp. 5909-5916
Sanna, V., Di Giacomo, A., La Cava, A., Leptin surge precedes onset of autoimmune encephalomyelitis and correlates with development of pathogenic T cell responses (2003) J. Clin. Invest., 111, pp. 241-250
De Rosa, V., Procaccini, C., La Cava, A., Leptin neutralization interferes with pathogenic T cell autoreactivity in autoimmune encephalomyelitis (2006) J. Clin. Invest., 116, pp. 447-455
Batocchi, A.P., Rotondi, M., Caggiula, M., Leptin as a marker of multiple sclerosis activity in patients treated with interferon-beta (2003) J. Neuroimmunol., 139, pp. 150-154
Poggi, M., Jager, J., Paulmyer-Lacroix, O., The inflammatory receptor CD40 is expressed on human adipocytes: contribution to crosstalk between lymphocytes and adipocytes (2009) Diabetologia, 52, pp. 1152-1163
Chatzigeorgiou, A., Phieler, J., Gebler, J., Bornstein, S.R., Chavakis, T., CD40L stimulates the crosstalk between adipocytes and inflammatory cells (2013) Horm. Metab. Res., 45, pp. 741-747
Burman, J., Svensson, E., Fransson, M., The cerebrospinal fluid cytokine signature of multiple sclerosis: a homogenous response that does not conform to the Th1/Th2/Th17 convention (2014) J. Neuroimmunol., 277, pp. 153-159
Kato, K., Santana-Sahagún, E., Rassenti, L.Z., The soluble CD40 ligand sCD154 in systemic lupus erythematosus (1999) J. Clin. Invest., 104, pp. 947-955
Khoury, S.J., Orav, E.J., Guttmann, C.R., Kikinis, R., Jolesz, F.A., Weiner, H.L., Changes in serum levels of ICAM and TNF-R correlate with disease activity in multiple sclerosis (1999) Neurology, 53, pp. 758-764
Van Oosten, B.W., Barkhof, F., Truyen, L., Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2 (1996) Neurology, 47, pp. 1531-1534
Praksova, P., Stourac, P., Bednarik, J., Vlckova, E., Mikulkova, Z., Michalek, J., Immunoregulatory T cells in multiple sclerosis and the effect of interferon beta and glatiramer acetate treatment on T cell subpopulations (2012) J. Neurol. Sci., 319, pp. 18-23
Longhini, A.L., von Glehn, F., Brandão, C.O., Plasmacytoid dendritic cells are increased in cerebrospinal fluid of untreated patients during multiple sclerosis relapse (2011) J. Neuroinflammation, 8, p. 2
Durelli, L., Conti, L., Clerico, M., T-helper 17 cells expand in multiple sclerosis and are inhibited by interferon-beta (2009) Ann. Neurol., 65, pp. 499-509
Immunometabolic profiling of patients with multiple sclerosis identifies new biomarkers to predict disease activity during treatment with interferon beta-1a
Reliable immunologic biomarkers able to monitor disease course during
multiple sclerosis (MS) are still missing. We aimed at identifying
possible immunometabolic biomarkers able to predict the clinical outcome
in MS patients during treatment with interferon (IFN)-beta-1a. We
measured in 45 relapsing-remitting (RR) MS patients, blood circulating
levels of several immunometabolic markers, at enrolment, and correlated
their levels to disease activity and progression over time. Higher
levels of interleukin (IL)-6, soluble-CD40-ligand (sCD40L) and leptin at
baseline associated with a higher relapse rate and a greater risk of
experiencing at least one relapse in the following year. Higher values
of soluble tumor necrosis factor receptor (sTNF-R) and leptin at
baseline were predictive of a higher number of lesions in the following
one-year of follow up. In conclusion, our data suggest that an
immunometabolic profiling measuring IL-6, sCD40L, leptin and sTNF-R at
baseline, could represent a useful tool to predict disease course in
RRMS patients during treatment with IFN-beta-1a.
Immunometabolic profiling of patients with multiple sclerosis identifies new biomarkers to predict disease activity during treatment with interferon beta-1a
Immunometabolic profiling of patients with multiple sclerosis identifies new biomarkers to predict disease activity during treatment with interferon beta-1a