A Quartz Crystal Microbalance Immunosensor for Stem Cell Selection and Extraction(1028 views)(PDF public151 views) Maglio O, Costanzo S, Cercola R, Zambrano G, Mauro M, Battaglia R, Ferrini G, Nastri F, Pavone V, Lombardi A
Sensors (ISSN: 1424-8220, 1424-3210, 1424-8220linking), 2017 Nov 28; 17(12): N/D-N/D.
Department of Chemical Sciences, University of Napoli "Federico II" Via Cintia, 80126 Napoli, Italy. ornella.maglio@unina.it., Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy. ornella.maglio@unina.it., Department of Chemical Sciences, University of Napoli "Federico II" Via Cintia, 80126 Napoli, Italy. salvatore.costanzo@upmc.fr., Department of Chemical Sciences, University of Napoli "Federico II" Via Cintia, 80126 Napoli, Italy. rc1274@york.ac.uk., Department of Chemical Sciences, University of Napoli "Federico II" Via Cintia, 80126 Napoli, Italy. gerardo.zambrano@unina.it., Novaetech S.r.l., Centro Direzionale, Isola G7, 80143 Napoli, Italy. mauro@novaetech.com., Novaetech S.r.l., Centro Direzionale, Isola G7, 80143 Napoli, Italy. battaglia@novaetech.com., Novaetech S.r.l., Centro Direzionale, Isola G7, 80143 Napoli, Italy. ferrini@novaetech.com., Department of Chemical Sciences, University of Napoli "Federico II" Via Cintia, 80126 Napoli, Italy. flavia.nastri@unina.it., Department of Chemical Sciences, University of Napoli "Federico II" Via Cintia, 80126 Napoli, Italy. vincenzo.pavone@unina.it., Department of Chemical Sciences, University of Napoli "Federico II" Via Cintia, 80126 Napoli, Italy. alombard@unina.it.,
Faculty of Chemistry, University Pierre et Marie Curie, 4 Place Jussieu, Paris, 75005, France
References: Tang, D., Yuan, R., Chai, Y., Quartz crystal microbalance immunoassay for carcinoma antigen 125 based on gold nanowire-functionalized biomimetic interface (2008) Analyst, 133, pp. 933-938. , [CrossRef] [PubMed
Yokoyama, K., Ikebukuro, K., Tamiya, E., Karube, I., Ichiki, N., Arikawa, Y., Highly sensitive quartz crystal immunosensors for multisample detection of herbicides (1995) Anal. Chim. Acta, 304, pp. 139-145. , [CrossRef]
Yakovleva, M.E., Safina, G.R., Danielsson, B.A., Study of glycoprotein–lectin interactions using quartz crystal microbalance (2010) Anal. Chim. Acta, 668, pp. 80-85. , [CrossRef] [PubMed]
Tang, D., Li, Q., Tanga, J., Sua, B., Chena, G., An enzyme-free quartz crystal microbalance biosensor for sensitive glucose detection in biological fluids based on glucose/dextran displacement approach (2011) Anal. Chim. Acta, 686, pp. 144-149. , [CrossRef] [PubMed]
Yang, Y., Tu, Y., Wang, X., Pan, J., Ding, Y., A Label-Free Immunosensor for Ultrasensitive Detection of Ketamine Based on Quartz Crystal Microbalance (2015) Sensors, 15, pp. 8540-8549. , [CrossRef] [PubMed]
Della Ventura, B., Sakaˇcb, N., Funaria, R., Velotta, R., Flexible immunosensor for the detection of salivary α-amylase in body fluids (2017) Talanta, 174, pp. 52-58. , [CrossRef] [PubMed]
Fernández, R., García, P., García, M., García, J.V., Jiménez, Y., Arnau, A., Design and Validation of a 150 MHz HFFQCM Sensor for Bio-Sensing Applications (2017) Sensors, 17, p. 2057. , [CrossRef] [PubMed]
Karczmarczyka, A., Haupt, K., Fellera, K.H., Development of a QCM-D biosensor for Ochratoxin A detection in red wine (2017) Talanta, 166, pp. 193-197. , [CrossRef] [PubMed]
Rixiang, H., Peng, Y., Yuanzhi, T., Probing the interactions of organic molecules, nanomaterials, and microbes with solid surfaces using quartz crystal microbalances: Methodology, advantages, and limitations (2017) Environ. Sci. Process. Impacts, 19, pp. 793-811. , [CrossRef]
Huang, X., Bai, Q., Hu, J., Hou, D., A Practical Model of Quartz Crystal Microbalance in Actual Applications (1785) Sensors, 2017, p. 17. , [CrossRef]
Dixon, M.C., Quartz Crystal Microbalance with Dissipation Monitoring: Enabling Real-Time Characterization of Biological Materials and Their Interactions (2008) J. Biomol. Tech, 19, pp. 151-158
Sauerbrey, G., Verwendung Von Schwingquarzen ZurWagung Dunner Schichten Und Zur Mikrowagung (1959) Z. Phys, 155, pp. 206-222. , (In German) [CrossRef]
Marx, K.A., Quartz Crystal Microbalance: A Useful Tool for Studying Thin Polymer Films and Complex Biomolecular Systems at the Solution-Surface Interface (2003) Biomacromolecules, 4, pp. 1099-1120. , [CrossRef] [PubMed]
Ferhan, A.R., Jackman, J.A., Cho, N.J., Integration of Quartz Crystal Microbalance-Dissipation and Reflection-Mode Localized Surface Plasmon Resonance Sensors for Biomacromolecular Interaction Analysis (2016) Anal. Chem., 88, pp. 12524-12531. , [CrossRef] [PubMed]
Dirri, F., Palomba, E., Longobardo, A., Biondi, D., Boccaccini, A., Bortolino, S., Scaccabarozzi, D., Zampetti, E., QCM-based sensor for volatile organic compounds characterization (2017) Proceedings of the 2017 IEEE International Workshop on Metrology for Aerospace (Metroaerospace), , Padua, Italy, 21–23 June, [CrossRef]
3,4-b0]bithiophenes with good recognition ability and selectivity for small organic molecules for application in QCM-based sensors (2004) J. Mater. Chem, 14, pp. 1804-1811. , [CrossRef]
Becker, B., Cooper, M., Survey of the 2006–2009 quartz crystal microbalance biosensor literature (2011) J. Mol. Recognit, 24, pp. 754-787. , [CrossRef] [PubMed]
Vashist, S.K., Vashist, P., Recent advances in quartz crystal microbalance-based sensors (2011) J. Sens, , [CrossRef]
Speight, R.E., Cooper, M.A., A Survey of the 2010 Quartz Crystal Microbalance Literature (2012) J. Mol. Recognit., 25, pp. 451-473. , [CrossRef] [PubMed]
Hosu, O., Selvolini, G., Cristea, C., Marrazza, G., Electrochemical Immunosensors for Disease Detection and Diagnosis (2017) Curr. Med. Chem, p. 24. , [CrossRef] [PubMed]
Kurosawa, S., Aizawa, H., Tozuka, M., Nakamura, M., Park, J.-W., Immunosensors using a quartz crystal microbalance (2003) Meas. Sci. Technol, 14, pp. 1882-1887. , [CrossRef]
Muramatsu, H., Tamiya, E., Karube, I., Determination of microbes and immunoglobulins using a piezoelectric biosensor (1989) J. Membr. Sci., 41, pp. 281-290. , [CrossRef]
Dultseva, F.N., Tronin, A.V., Rapid sensing of hepatitis B virus using QCM in the thickness shear mode (2015) Sens. Actuators B, 216, pp. 1-5. , [CrossRef]
Su, X.L., Li, Y., A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157:H7 (2004) Biosens. Bioelectron, 19, pp. 563-574. , [CrossRef]
Wang, L.J., Wu, C.S., Hu, Z.Y., Zhang, Y.F., Li, R., Wang, P., Sensing Escherichia coli O157:H7 via frequency shift through a self-assembled monolayer based QCM immunosensor (2008) J. Zhejiang Univ. Sci. B, 9, pp. 121-131. , [CrossRef] [PubMed]
Ngo, V.K.T., Nguyen, D.G., Nguyen, H.P.U., Tran, V.M., Nguyen, T.K.M., Huynh, T.P., Lam, Q.V., Truong, T.N.L., Quartz crystal microbalance (QCM) as biosensor for the detecting of Escherichia coli O157:H7 (2014) Adv. Nat. Sci. Nanosci. Nanotechnol, 5. , [CrossRef]
Mannelli, I., Minunni, M., Tombelli, S., Mascini, M., Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organism (GMOs) detection. Biosens (2003) Bioelectron, 18, pp. 129-140. , [CrossRef]
Lazerges, M., Perrot, H., Zeghib, N., Antoine, E., Comperec, C., In Situ QCM DNA-biosensor probe modification (2006) Sens. Actuators B, 120, pp. 329-337. , [CrossRef]
Kurosawa, S., Park, J.W., Aizawa, H., Wakida, S.I., Tao, H., Ishihara, K., Quartz crystal microbalance immunosensors for environmental monitoring (2006) Biosens. Bioelectron, 22, pp. 473-481. , [CrossRef] [PubMed]
Shen, H., Zhou, T., Hu, J., A high-throughput QCM chip configuration for the study of living cells and cell-drug interactions (2017) Anal. Bioanal. Chem., 409, pp. 6463-6473. , [CrossRef] [PubMed]
Masdor, N.A., Altintas, Z., Tothill, I.E., Sensitive detection of Campylobacter jejuni using nanoparticles enhanced QCM sensor (2016) Biosens. Bioelectron, 78, pp. 328-336. , [CrossRef] [PubMed]
Zhang, B., Zhang, X., Yan, H.H., Xu, S.J., Tang, D., Fu, W.L., A novel multi-array immunoassay device for tumor markers based on insert-plug model of piezoelectric immunosensor (2007) Biosens. Bioelectron, 23, pp. 19-25. , [CrossRef] [PubMed]
Tögel, F., Westenfelder, C., The role of multipotent marrow stromal cells (MSCs) in tissue regeneration (2011) Organogenesis, 7, pp. 96-100. , [CrossRef] [PubMed]
Dantuma, E., Merchant, S., Sugaya, K., Stem cells for the treatment of neurodegenerative diseases (2010) Stem Cell Res. Ther, 1, p. 37. , [CrossRef] [PubMed]
Toma, J.G., Akhavan, M., Fernandes, K.J.L., Barnabé-Heider, F., Sadikot, A., Kaplan, D.R., Miller, F.D., Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat (2001) Cell Biol, 3, pp. 778-784. , [CrossRef] [PubMed]
Henningson, C.T., Stanislaus, M.A., Gewirtz, A.M., Embryonic and adult stem cell therapy (2003) J. Allergy Clin. Immunol, 111, pp. S745-S753. , [CrossRef] [PubMed]
Ashri, Y.N., Ajlan, S.A., Aldahmash, A.M., Dental pulp stem cells (2015) Saudi Med. J, 36, pp. 1391-1399. , [CrossRef] [PubMed]
Potdar, P.D., Jethmalani, Y.D., Human dental pulp stem cells: Applications in future regenerative medicine (2015) World J. Stem Cells, 26, pp. 839-851. , [CrossRef] [PubMed]
Chang, J., Zhang, C., Tani-Ishii, N., Shi, S., Wang, C.Y., NF-kB Activation in human dental pulp stem cells by TNF and LPS (2005) J. Dent. Res., 84, pp. 994-998. , [CrossRef] [PubMed]
Fathi, F., Rahbarghazi, R., Rashidi, M.R., Label-free biosensors in the field of stem cell biology (2018) Biosens. Bioelectron, 101, pp. 188-198. , [CrossRef] [PubMed]
Nicodemou, A., Danisovic, L., Mesenchymal stromal/stem cell separation methods: Concise review (2017) Cell Tissue Bank, 18, pp. 443-460. , [CrossRef] [PubMed]
Cagnin, S., Cimetta, E., Guiducci, C., Martini, P., Lanfranchi, G., Overview of Micro- and Nano-Technology Tools for Stem Cell Applications: Micropatterned and Microelectronic Devices (2012) Sensors, 12, pp. 15947-15982. , [CrossRef] [PubMed]
Tucker, H.A., Bunnell, B.A., Characterization of human adipose-derived stem cells using flow cytometry (2011) Methods Mol. Biol, 702, pp. 121-131. , [CrossRef] [PubMed]
Battye, F.L., Shortman, K., Flow cytometry and cell-separation procedures (1991) Curr. Opin. Immunol, 3, pp. 239-241. , [CrossRef]
Herzenberg, L.A., Parks, D., Sahaf, B., Perez, O., Roederer, M., Herzenberg, L.A., The history and future of the fluorescence activated cell sorter and flow cytometry: A view from Stanford (2002) Clin. Chem, 48, pp. 1819-1827. , [PubMed]
Herzenberg, L.A., De Rosa, S.C., Monoclonal antibodies and the FACS: Complementary tools for immunobiology and medicine) (2000) Immunol. Today, 21, pp. 383-390. , [CrossRef]
Rusmini, F., Zhong, Z., Feijen, J., Protein Immobilization Strategies for Protein Biochips (2007) Biomacromolecules, 8, pp. 1775-1789. , [CrossRef] [PubMed]
Vashist, S.K., Dixit, C.K., Maccraith, B.D., O’Kennedy, R., Effect of antibody immobilization strategies on the analytical performance of a surface plasmon resonance-based immunoassay (2011) Analyst, 136, p. 4431. , [CrossRef] [PubMed]
Vashist, S.K., Lam, E., Hrapovic, S., Male, K.B., Luong, J.H.T., Immobilization of Antibodies and Enzymes on 3-Aminopropyltriethoxysilane-Functionalized Bioanalytical Platforms for Biosensors and Diagnostics (2014) Chem. Rev, 114, pp. 11083-11130. , [CrossRef] [PubMed]
Diamandis, E.P., Christopoulos, T.K., The Biotin-(Strept)Avidin System: Principles and Applications in Biotechnology. Clin (1991) Chem, 37, pp. 625-636. , [PubMed]
Savage, M.D., Mattson, G., Desai, S., Nielander, G.W., Morgensen, S., Conklin, E.J., (1992) Avidin-Biotin Chemistry: A Handbook, , Pierce Chemical Co.: Rockford, IL, USA, ISBN 978-0935940114
Ulman, A., Formation and structure of self-assembled monolayers (1996) Chem. Rev, 96, pp. 1533-1554. , [CrossRef] [PubMed]
Wink, T., Van Zuilen, S.J., Bult, A., Van Bennekom, W.P., Self-assembled monolayers for biosensors (1997) Analyst, 122, pp. 43R-50R. , [CrossRef] [PubMed]
Vestergaard, M.C., Tamiya, E., Introduction to Nanobiosensors and Nanobioanalyses (2015) In Nanobiosensors and Nanobioanalyses, pp. 3-20. , Vestergaard, M.C., Kerman, K., Hsing, I.-M., Tamiya, E., Eds.
Springer: Tokyo, Japan, ISBN 978-4-431-55189-8
Schwartz, D.K., Mechanisms and kinetics of self-assembled monolayer formation (2001) Annu. Rev. Phys. Chem, 52, pp. 107-137. , [CrossRef] [PubMed]
Seifert, M., Rinker, M.T., Galla, H.J., Characterization of Streptavidin Binding to Biotinylated, Binary Self-Assembled ThiolMonolayers. Influence of component ratio and solvent (2010) Langmuir, 26, pp. 6386-6393. , [CrossRef] [PubMed]
Yam, C.M., Pradier, C.M., Salmain, M., Marcus, P., Jaouen, G., Binding of Biotin to Gold Surfaces Functionalized by Self-Assembled Monolayers of Cystamine and Cysteamine: Combined FT-IRRAS and XPS Characterization (2001) J. Colloid Interface Sci, 235, pp. 183-189. , [CrossRef] [PubMed]
Azzaroni, O., Mir, M., Knoll, W., Supramolecular architectures of streptavidin on biotinylated self-assembled monolayers. Tracking biomolecular reorganization after bioconjugation (2007) J. Phys. Chem. B, 111, pp. 13499-13503. , [CrossRef] [PubMed]
Martin, S.J., Granstaff, V.E., Frye, G.C., Characterization of a Quartz Crystal Microbalance with Simultaneous Mass and Liquid Loading. Anal (1991) Chem, 63, pp. 2272-2281. , [CrossRef]
Atay, S., Pişkin, K., Yılmaz, F., Çakır, C., Yavuzd, H., Denizli, A., Quartz crystal microbalance based biosensors for detecting highly metastatic breast cancer cells via their transferrin receptors (2016) Anal. Methods, 8, pp. 153-161. , [CrossRef]
Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., Darnell, J., The Molecules of Life (2000) In Molecular Cell Biology, , https://www.ncbi.nlm.nih.gov/books/NBK21473, 4th ed.
Freeman, W.H.: New York, NY, USA, (accessed on 12 November 2017)