Optimization Strategies for Responsivity Control of Microgel Assisted Lab-On-Fiber Optrodes(375 views)(PDF public218 views) Giaquinto M, Micco A, Aliberti A, Bobeico E, La Ferrara V, Ruvo M, Ricciardi A, Cusano A
Optoelectronics Group, Department of Engineering, University of Sannio, I-82100 Benevento, Italy. martino.giaquinto@unisannio.it.
ENEA, Portici Research Center, P. le E. Fermi 1, Portici, I-80055 Napoli, Italy. eugenia.bobeico@enea.it.
Institute of Biostructure and Bioimaging, National Research Council, I-80143 Napoli, Italy. menotti.ruvo@unina.it.
References: Vaiano, P., Carotenuto, B., Pisco, M., Ricciardi, A., Quero, G., Consales, M., Crescitelli, A., Cusano, A., Lab on fiber technology for biological sensing applications (2016) Laser Photonics Rev, 10, pp. 922-96
Cusano, A., Consales, M., Crescitelli, A., Ricciardi, A., (2015) Lab-On-Fiber Technology, 56. , Springer: Berlin, Germany
Consales, M., Ricciardi, A., Crescitelli, A., Esposito, E., Cutolo, A., Cusano, A., Lab-on-fiber technology: Toward multifunctional optical nanoprobes (2012) ACS Nano, 6, pp. 3163-3170
Ricciardi, A., Consoles, M., Quero, G., Crescitelli, A., Esposito, E., Cusano, A., Versatile optical fiber nanoprobes: From plasmonic biosensors to polarization-sensitive devices (2014) ACS Photonics, 1, pp. 69-78
Ricciardi, A., Aliberti, A., Giaquinto, M., Micco, A., Cusano, A., Microgel Photonics: A Breathing Cavity onto Optical Fiber Tip (2015) Proceedings of the 24Th International Conference on Optical Fibre Sensors, , Curitiba, Brazil, 28 September–2 October 2015
SPIE: Bellingham, WA, USA
Kostovski, G., Stoddart, P.R., Mitchell, A., The optical fiber tip: An inherently light-coupled microscopic platform for micro-and nanotechnologies (2014) Adv. Mater., 26, pp. 3798-3820
Pelton, R., Hoare, T., Microgels and their synthesis: An introduction (2011) Microgel Suspensions: Fundamentals and Applications, 1, pp. 1-32. , John Wiley & Sons: Hoboken, NJ, USA
Plamper, F.A., Richtering, W., Functional microgels and microgel systems (2017) Accounts Chem. Res., 50, pp. 131-140
Wei, M.L., Gao, Y.F., Li, X., Serpe, M.J., Stimuli-responsive polymers and their applications (2017) Polym. Chem., 8, pp. 127-143
Aliberti, A., Ricciardi, A., Giaquinto, M., Micco, A., Bobeico, E., la Ferrara, V., Ruvo, M., Cusano, A., Microgel assisted lab-on-fiber optrode (2017) Sci. Rep., 7, p. 14459
Giaquinto, M., Ricciardi, A., Aliberti, A., Micco, A., Bobeico, E., Ruvo, M., Cusano, A., Light-microgel interaction in resonant nanostructures (2018) Sci. Rep., , under review
Jiang, Y., Chen, J., Deng, C., Suuronen, E.J., Zhong, Z., Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue engineering (2014) Biomaterials, 35, pp. 4969-4985
Oh, J.K., Drumright, R., Siegwart, D.J., Matyjaszewski, K., The development of microgels/nanogels for drug delivery applications (2008) Prog. Polym. Sci., 33, pp. 448-477
Schmidt, S., Zeiser, M., Hellweg, T., Duschl, C., Fery, A., Möhwald, H., Adhesion and mechanical properties of pnipam microgel films and their potential use as switchable cell culture substrates (2010) Adv. Funct. Mater., 20, pp. 3235-3243
Islam, M.R., Ahiabu, A., Li, X., Serpe, M.J., Poly (N-isopropylacrylamide) microgel-based optical devices for sensing and biosensing (2014) Sensors, 14, pp. 8984-8995
Nerapusri, V., Keddie, J.L., Vincent, B., Bushnak, I.A., Swelling and deswelling of adsorbed microgel monolayers triggered by changes in temperature, pH, and electrolyte concentration (2006) Langmuir, 22, pp. 5036-5041
Serpe, M.J., Jones, C.D., Lyon, L.A., Layer-by-layer deposition of thermoresponsive microgel thin films (2003) Langmuir, 19, pp. 8759-8764
Schmidt, S., Motschmann, H., Hellweg, T., von Klitzing, R., Thermoresponsive surfaces by spin-coating of PNIPAM-co-PAA microgels: A combined AFM and ellipsometry study (2008) Polymer, 49, pp. 749-756
Sorrell, C.D., Lyon, L.A., Deformation controlled assembly of binary microgel thin films (2008) Langmuir, 24, pp. 7216-7222
Schmidt, S., Hellweg, T., von Klitzing, R., Packing density control in P (NIPAM-co-AAc) microgel monolayers: Effect of surface charge, pH, and preparation technique (2008) Langmuir, 24, pp. 12595-12602
Tsuji, S., Kawaguchi, H., Colored thin films prepared from hydrogel microspheres (2005) Langmuir, 21, pp. 8439-8442
Sakai, T., Takeoka, Y., Seki, T., Yoshida, R., Organized monolayer of thermosensitive microgel beads prepared by double-template polymerization (2007) Langmuir, 23, pp. 8651-8654
South, A.B., Whitmire, R.E., Garcia, A.J., Lyon, L.A., Centrifugal deposition of microgels for the rapid assembly of nonfouling thin films (2009) ACS Appl. Mater. Interfaces, 1, pp. 2747-2754
Singh, N., Bridges, A.W., García, A.J., Lyon, L.A., Covalent tethering of functional microgel films onto poly (Ethylene terephthalate) surfaces (2007) Biomacromolecules, 8, pp. 3271-3275
Meng, Z., Cho, J.K., Debord, S., Breedveld, V., Lyon, L.A., Crystallization behavior of soft, attractive microgels (2007) J. Phys. Chem. B, 111, pp. 6992-6997
Sorrell, C.D., Carter, M.C., Serpe, M.J., A “paint-on” protocol for the facile assembly of uniform microgel coatings for color tunable etalon fabrication (2011) ACS Appl. Mater. Interfaces, 3, pp. 1140-1147
Hu, L., Serpe, M.J., The influence of deposition solution pH and ionic strength on the quality of poly (N-isopropylacrylamide) microgel-based thin films and etalons (2013) ACS Appl. Mater. Interfaces, 5, pp. 11977-11983
Sorrell, C.D., Serpe, M.J., Reflection order selectivity of color-tunable poly(N-isopropylacrylamide) microgel based etalons (2011) Adv. Mater., 23, pp. 4088-4092
Lu, Y., Drechsler, M., Charge-induced self-assembly of 2-dimensional thermosensitive microgel particle patterns (2009) Langmuir, 25, pp. 13100-13105
Iori, F., Corni, S., Di Felice, R., Unraveling the interaction between histidine side chain and the Au(111) surface: A DFT study (2008) J. Phys. Chem. C, 112, pp. 13540-13545
Yin, X., Hoffman, A.S., Stayton, P.S., Poly (N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH (2006) Biomacromolecules, 7, pp. 1381-1385
Wang, B., Xu, X.-D., Wang, Z.-C., Cheng, S.-X., Zhang, X.-Z., Zhuo, R.-X., Synthesis and properties of pH and temperature sensitive P (NIPAAm-co-DMAEMA) hydrogels (2008) Colloids Surf. B Biointerfaces, 64, pp. 34-41
Aguilar, M., San Román, J., Introduction to smart polymers and their applications (2014) Smart Polymers and Their Applications, pp. 1-11. , Elsevier: New York, NY, USA
Optimization Strategies for Responsivity Control of Microgel Assisted Lab-On-Fiber Optrodes
Integrating multi-responsive polymers such as microgels onto optical
fiber tips, in a controlled fashion, enables unprecedented
functionalities to Lab-on-fiber optrodes. The creation of a uniform
microgel monolayer with a specific coverage factor is crucial for
enhancing the probes responsivity to a pre-defined target parameter.
Here we report a reliable fabrication strategy, based on the dip coating
technique, for the controlled realization of microgel monolayer onto
unconventional substrates, such as the optical fiber tip. The latter was
previously covered by a plasmonic nanostructure to make it sensitive to
superficial environment changes. Microgels have been prepared using
specific Poly(
N
-isopropylacrylamide)-based monomers that enable
bulky size changes in response to both temperature and pH variations.
The formation of the microgel monolayer is efficiently controlled
through the selection of suitable operating pH, temperature and
concentration of particle dispersions used during the dipping procedure.
The effect of each parameter has been evaluated, and the validity of
our procedure is confirmed by means of both morphological and optical
characterizations. We demonstrate that when the coverage factor exceeds
90%, the probe responsivity to microgels swelling/collapsing is
significantly improved. Our study opens new paradigms for the
development of engineered microgels assisted Lab-on-Fiber probes for
biochemical applications.
Optimization Strategies for Responsivity Control of Microgel Assisted Lab-On-Fiber Optrodes
No results.
Optimization Strategies for Responsivity Control of Microgel Assisted Lab-On-Fiber Optrodes