Simultaneous resting-state FDG-PET/fMRI in Alzheimer Disease: Relationship between glucose metabolism and intrinsic activity(919 views) Marchitelli R, Aiello M, Cachia A, Quarantelli M, Cavaliere C, Postiglione A, Tedeschi G, Montella P, Milan G, Salvatore M, Salvatore E, Baron JC, Pappata S
Neuroimage (ISSN: 1053-8119linking), 2018 Aug 1; 176: 246-258.
IRCCS SDN, Institute of Nuclear and Diagnostic Research, Via E. Gianturco 113, 80143, Naples, Italy.
INSERM U894, Universite Paris Descartes, Centre Hospitalier Sainte-Anne, Sorbonne Paris Cite, Paris, France
CNRS U8240, Universite Paris Descartes, Sorbonne Paris Cite, Paris, France
Institut Universitaire de France, Paris, France.
Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy.
Department of Clinical Medicine & Surgery, University of Naples "Federico II", Naples, Italy.
Dept of Medical, Surgical Neurological Metabolic and Aging Sciences. University of Campania "L. Vanvitelli", Italy.
Centro Geriatrico Frullone, ASL Napoli 1 Centro, Naples, Italy.
Department of Neuroscience Reproductive Sciences and Odontostomatology, Federico II University, Naples, Italy.
Dept of Neurology, Centre Hospitalier Sainte-Anne, Universite Paris Descartes, INSERM U894, Paris, France.
References: Agosta, F., Pievani, M., Geroldi, C., Copetti, M., Frisoni, G.B., Filippi, M., Resting state fMRI in Alzheimer's disease: beyond the default mode network (2012) Neurobiol. Aging, 33 (8), pp. 1564-157
Aiello, M., Salvatore, E., Cachia, A., Pappatà, S., Cavaliere, C., Prinster, A., Nicolai, E., Quarantelli, M., Relationship between simultaneously acquired resting-state regional cerebral glucose metabolism and functional MRI: a PET/MR hybrid scanner study (2015) Neuroimage, 113, pp. 111-121
Aiello, M., Cavaliere, C., Salvatore, M., Hybrid PET/MR imaging and brain connectivity (2016) Front. Neurosci., 10
Algarin, C., Karunakaran, K.D., Reyes, S., Morales, C., Lozoff, B., Peirano, P., Biswal, B., Differences on brain connectivity in adulthood are present in subjects with iron deficiency anemia in infancy (2017) Front. Aging Neurosci., 9, p. 54
Altman, D.G., Practical Statistics for Medical Research Chapman & Hall London Google Scholar (1991)
Austin, B.P., Nair, V.A., Meier, T.B., Xu, G., Rowley, H.A., Carlsson, C.M., Johnson, S.C., Prabhakaran, V., Effects of hypoperfusion in Alzheimer's disease (2011) J. Alzheimer's Dis., 26 (s3), pp. 123-133
Badhwar, A., Tam, A., Dansereau, C., Orban, P., Hoffstaedter, F., Bellec, P., Resting-state network dysfunction in Alzheimer's disease: a systematic review and meta-analysis. Alzheimer's & Dementia: Diagnosis (2017) Assess. Dis. Monit., 8, pp. 73-85
Beckmann, C.F., Smith, S.M., Probabilistic independent component analysis for functional magnetic resonance imaging (2004) IEEE Trans. Med. imaging, 23 (2), pp. 137-152
Beckmann, C.F., Mackay, C.E., Filippini, N., Smith, S.M., Group comparison of resting-state FMRI data using multi-subject ICA and dual regression (2009) Neuroimage, 47, p. S148
Bernier, M., Croteau, E., Castellano, C.A., Cunnane, S.C., Whittingstall, K., Spatial distribution of resting-state BOLD regional homogeneity as a predictor of brain glucose uptake: a study in healthy aging (2017) Neuroimage, 150, pp. 14-22
Binnewijzend, M.A., Schoonheim, M.M., Sanz-Arigita, E., Wink, A.M., van der Flier, W.M., Tolboom, N., Adriaanse, S.M., Barkhof, F., Resting-state fMRI changes in Alzheimer's disease and mild cognitive impairment (2012) Neurobiol. Aging, 33 (9), pp. 2018-2028
Blin, J., Ivanoiu, A., Coppens, A., De Volder, A., Labar, D., Michel, C., Laterre, E.C., Cholinergic neurotransmission has different effects on cerebral glucose consumption and blood flow in young normals, aged normals, and Alzheimer's disease patients (1997) Neuroimage, 6 (4), pp. 335-343
Bouwman, F.H., Verwey, N.A., Klein, M., Kok, A., Blankenstein, M.A., Sluimer, J.D., Barkhof, F., Scheltens, P., New research criteria for the diagnosis of Alzheimer's disease applied in a memory clinic population (2010) Dementia geriatric cognitive Disord., 30 (1), pp. 1-7
Bozzao, A., Floris, R., Baviera, M.E., Apruzzese, A., Simonetti, G., Diffusion and perfusion MR imaging in cases of Alzheimer's disease: correlations with cortical atrophy and lesion load (2001) Am. J. Neuroradiol., 22 (6), pp. 1030-1036
Brown, R.K., Bohnen, N.I., Wong, K.K., Minoshima, S., Frey, K.A., Brain PET in suspected dementia: patterns of altered FDG metabolism (2014) Radiographics, 34 (3), pp. 684-701
Buckner, R.L., Andrews-Hanna, J.R., Schacter, D.L., The brain's default network (2008) Ann. N. Y. Acad. Sci., 1124 (1), pp. 1-38
Bullmore, E., Sporns, O., The economy of brain network organization (2012) Nat. Rev. Neurosci., 13 (5), pp. 336-349
Calhoun, V.D., Adali, T., Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery (2012) IEEE Rev. Biomed. Eng., 5, pp. 60-73
Cecchin, D., Palombit, A., Castellaro, M., Silvestri, E., Bui, F., Barthel, H., Sabri, O., Bertoldo, A., Brain PET and functional MRI: why simultaneously using hybrid PET/MR systems? (2017) Q. J. Nucl. Med. Mol. Imaging
Cha, J., Hwang, J.M., Jo, H.J., Seo, S.W., Na, D.L., Lee, J.M., Assessment of functional characteristics of amnestic mild cognitive impairment and Alzheimer's disease using various methods of resting-state FMRI analysis (2015) BioMed Res. Int., 2015
Chételat, G., Desgranges, B., de la Sayette, V., Viader, F., Eustache, F., Baron, J.C., Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer's disease? (2003) Neurology, 60 (8), pp. 1374-1377
Chételat, G., Villain, N., Desgranges, B., Eustache, F., Baron, J.C., Posterior cingulate hypometabolism in early Alzheimer's disease: what is the contribution of local atrophy versus disconnection? (2009) Brain, 132. , e133
Cohen, J., Statistical Power Analysis for the Behavioral Sciences (1988), Routledge Academic New York, NY
Cox, R.W., AFNI: software for analysis and visualization of functional magnetic resonance neuroimages (1996) Comput. Biomed. Res., 29 (3), pp. 162-173
Cox, R.W., AFNI: what a long strange trip it's been (2012) Neuroimage, 62 (2), pp. 743-747
Damoiseaux, J.S., Effects of aging on functional and structural brain connectivity (2017) Neuroimage, 17, pp. 30101-30105. , pii: S1053-8119
Delso, G., Fürst, S., Jakoby, B., Ladebeck, R., Ganter, C., Nekolla, S.G., Schwaiger, M., Ziegler, S.I., Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner (2011) J. Nucl. Med., 52 (12), pp. 1914-1922
Dennis, E.L., Thompson, P.M., Functional brain connectivity using fMRI in aging and Alzheimer's disease (2014) Neuropsychol. Rev., 24 (1), p. 49
Diaz-Ponce, A., Baláčková, N., Grönqvist, R., Rohra, H., Rockford-Brennan, H., Orheim, A., Doxford, H., Bentley, P., Dementia in Europe Yearbook 2016-Decision Making and Legal Capacity in Dementia (2016)
Drevets, W.C., Bogers, W., Raichle, M.E., Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism (2002) Eur. Neuropsychopharmacol., 12 (6), pp. 527-544
Drzezga, A., Barthel, H., Minoshima, S., Sabri, O., Potential clinical applications of PET/MR imaging in neurodegenerative diseases (2014) J. Nucl. Med., 55, pp. 47S-55S
Dubois, B., Feldman, H.H., Jacova, C., Hampel, H., Molinuevo, J.L., Blennow, K., DeKosky, S.T., Cappa, S., Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria (2014) Lancet Neurology, 13 (6), pp. 614-629
Elseoud, A.A., Littow, H., Remes, J., Starck, T., Nikkinen, J., Nissilä, J., Timonen, M., Kiviniemi, V., Group-ICA model order highlights patterns of functional brain connectivity (2011) Front. Syst. Neurosci., p. 5
Fazekas, F., Chawluk, J.B., Alavi, A., Hurtig, H.I., Zimmerman, R.A., MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging (1987) Am. J. Roentgenol., 149 (2), pp. 351-356
Folstein, M.F., Folstein, S.E., McHugh, P.R., ‘‘Mini-mental state’’. A practical method for grading the cognitive state of patients for the clinician (1975) J. Psychiatric Res., 12, pp. 189-198
Goldberg, S., Smith, G.S., Barnes, A., Ma, Y., Kramer, E., Robeson, K., Kirshner, M., Eidelberg, D., Serotonin modulation of cerebral glucose metabolism in normal aging (2004) Neurobiol. Aging, 25 (2), pp. 167-174
Goldstone, A., Mayhew, S.D., Przezdzik, I., Wilson, R.S., Hale, J.R., Bagshaw, A.P., Gender specific Re-organization of resting-state networks in older age (2016) Front. Aging Neurosci., 8, p. 285
Grabner, G., Janke, A., Budge, M., Smith, D., Pruessner, J., Collins, D., Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults (2006) Med. Image Comput. Computer-Assisted Intervention–MICCAI, 2006, pp. 58-66
Greicius, M.D., Srivastava, G., Reiss, A.L., Menon, V., Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI (2004) Proc. Natl. Acad. Sci. U. S. A., 101 (13), pp. 4637-4642
Gusnard, D.A., Raichle, M.E., Searching for a baseline: functional imaging and the resting human brain (2001) Nat. Rev. Neurosci., 2 (10), pp. 685-694
Hafkemeijer, A., van der Grond, J., Rombouts, S.A., Imaging the default mode network in aging and dementia (2012) Biochimica Biophysica Acta (BBA)-Molecular Basis Dis., 1822 (3), pp. 431-441
Harris, J.J., Jolivet, R., Attwell, D., Synaptic energy use and supply (2012) Neuron, 75 (5), pp. 762-777
Huang, S., Zhou, F., Jiang, J., Huang, M., Zeng, X., Ding, S., Gong, H., Regional impairment of intrinsic functional connectivity strength in patients with chronic primary insomnia (2017) Neuropsychiatr. Dis. Treat., 13, pp. 1449-1462
Hyder, F., Herman, P., Bailey, C.J., Møller, A., Globinsky, R., Fulbright, R.K., Rothman, D.L., Gjedde, A., Uniform distributions of glucose oxidation and oxygen extraction in gray matter of normal human brain: No evidence of regional differences of aerobic glycolysis (2016) J. Cereb. Blood Flow Metabolism, 36 (5), pp. 903-916
Ito, K., Fukuyama, H., Senda, M., Ishii, K., Maeda, K., Yamamoto, Y., Ouchi, Y., Ikeda, M., Prediction of outcomes in mild cognitive impairment by using 18F-FDG-PET: a multicenter study (2015) J. Alzheimer's Dis., 45 (2), pp. 543-552
Jenkinson, M., Pechaud, M., Smith, S., BET2: MR-based estimation of brain, skull and scalp surfaces (2005) Eleventh Annual Meeting of the Organization for Human Brain Mapping
Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M., Fsl (2012) Neuroimage, 62 (2), pp. 782-790
Jones, D.T., Machulda, M.M., Vemuri, P., McDade, E.M., Zeng, G., Senjem, M.L., Gunter, J.L., Jack, C.R., Jr., Age-related changes in the default mode network are more advanced in Alzheimer disease (2011) Neurology, 77 (16), pp. 1524-1531
Kapogiannis, D., Mattson, M.P., Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer's disease (2011) Lancet Neurology, 10 (2), pp. 187-198
Kazemifar, S., Manning, K.Y., Rajakumar, N., Gómez, F.A., Soddu, A., Borrie, M.J., Menon, R.S., Alzheimer's Disease Neuroimaging Initiative, Spontaneous low frequency BOLD signal variations from resting-state fMRI are decreased in Alzheimer disease (2017) PLoS One, 12 (6). , e0178529
Klaassens, B.L., van Gerven, J.M.A., van der Grond, J., de Vos, F., Moller, C., Rombouts, S., Diminished posterior precuneus connectivity with the default mode network differentiates normal aging from Alzheimer's disease (2017) Front. aging Neurosci., 9
Liu, Y., Wang, K., Yu, C., He, Y., Zhou, Y., Liang, M., Wang, L., Jiang, T., Regional homogeneity, functional connectivity and imaging markers of Alzheimer's disease: a review of resting-state fMRI studies (2008) Neuropsychologia, 46 (6), pp. 1648-1656
Marchitelli, R., Collignon, O., Jovicich, J., Test-retest reproducibility of the intrinsic default mode network: influence of functional magnetic resonance imaging slice-order acquisition and head-motion correction methods (2017) Brain Connect., 7 (2), pp. 69-83
McGrath, R.E., Meyer, G.J., When effect sizes disagree: the case of r and d (2006) Psychol. Methods, 11 (4), pp. 386-401
McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack, C.R., Jr., Kawas, C.H., Klunk, W.E., Phelps, C.H., The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease (2011) Alzheimer's Dementia, 7 (3), pp. 263-269
Mergenthaler, P., Lindauer, U., Dienel, G.A., Meisel, A., Sugar for the brain: the role of glucose in physiological and pathological brain function (2013) Trends Neurosci., 36 (10), pp. 587-597
Minoshima, S., Giordani, B., Berent, S., Frey, K.A., Foster, N.L., Kuhl, D.E., Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease (1997) Ann. Neurol., 42 (1), pp. 85-94
Montembeault, M., Rouleau, I., Provost, J.-S., Brambati, S.M., Altered gray matter structural covariance networks in early stages of Alzheimer's disease (2016) Cereb. Cortex (New York, NY), 26 (6), pp. 2650-2662
Mosconi, L., Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease. FDG-PET studies in MCI and AD (2005) Eur. J. Nucl. Med. Mol. imaging, 32 (4), pp. 486-510
Nagata, K., Kondoh, Y., Atchison, R., Sato, M., Satoh, Y., Watahiki, Y., Hirata, Y., Yokoyama, E., Vascular and metabolic reserve in Alzheimer's disease (2000) Neurobiol. aging, 21 (2), pp. 301-307
Nagata, K., Sato, M., Satoh, Y., Watahiki, Y., Kondoh, Y., Sugawara, M., Box, G., Shimosegawa, E., Hemodynamic aspects of Alzheimer's disease (2002) Ann. N. Y. Acad. Sci., 977, pp. 391-402
Nicolakakis, N., Hamel, E., Neurovascular function in Alzheimer's disease patients and experimental models (2011) J. Cereb. Blood Flow Metabolism, 31 (6), pp. 1354-1370
Nisbet, R.M., Polanco, J.C., Ittner, L.M., Gotz, J., Tau aggregation and its interplay with amyloid-beta (2015) Acta neuropathol., 129 (2), pp. 207-220
Nordberg, A., Amyloid imaging in early detection of Alzheimer's disease (2010) Neurodegener. Dis., 7 (1-3), pp. 136-138
Petersen, R.C., Roberts, R.O., Knopman, D.S., Boeve, B.F., Geda, Y.E., Ivnik, R.J., Smith, G.E., Jack, C.R., Jr., Mild cognitive impairment: ten years later (2009) Archives neurology, 66 (12), pp. 1447-1455
Poldrack, R.A., Baker, C.I., Durnez, J., Gorgolewski, K.J., Matthews, P.M., Munafò, M.R., Nichols, T.E., Yarkoni, T., Scanning the horizon: towards transparent and reproducible neuroimaging research (2017) Nat. Rev. Neurosci., 18 (2), pp. 115-126
Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion (2012) Neuroimage, 59 (3), pp. 2142-2154
Quarantelli, M., Berkouk, K., Prinster, A., Landeau, B., Svarer, C., Balkay, L., Alfano, B., Salvatore, M., Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction (2004) J. Nucl. Med., 45, pp. 192-201
Rahim, M., Thirion, B., Abraham, A., Eickenberg, M., Dohmatob, E., Comtat, C., Varoquaux, G., Integrating multimodal priors in predictive models for the functional characterization of Alzheimer's disease (2015) Med. Image Comput. Comput. Assisted Intervention
Riedl, V., Bienkowska, K., Strobel, C., Tahmasian, M., Grimmer, T., Forster, S., Friston, J.K., Drzezga, A., Local activity determines functional connectivity in the resting human brain: a simultaneous FDG-PET/fMRI study (2014) J. Neurosci., 34 (18), pp. 6260-6266
Sarazin, M., Chauvire, V., Gerardin, E., Colliot, O., Kinkingnehun, S., de Souza, L.C., Hugonot-Diener, L., Dubois, B., The amnestic syndrome of hippocampal type in Alzheimer's disease: an MRI study (2010) J. Alzheimer's Dis., 22 (1), pp. 285-294
Scheltens, P., Blennow, K., Breteler, M.M., de Strooper, B., Frisoni, G.B., Salloway, S., Van der Flier, W.M., Alzheimer's disease (2016) Lancet, 388 (10043), pp. 505-517
Shidahara, M., Tsoumpas, C., Hammers, A., Boussion, N., Visvikis, D., Suhara, T., Kanno, I., Turkheimer, F.E., Functional and structural synergy for resolution recovery and partial volume correction in brain PET (2009) NeuroImage, 44 (2), pp. 340-348
Simpson, I.A., Carruthers, A., Vannucci, S.J., Supply and demand in cerebral energy metabolism: the role of nutrient transporters (2007) J. Cereb. Blood Flow Metabolism, 27 (11), pp. 1766-1791
Smith, S.M., Fast robust automated brain extraction (2002) Hum. Brain Mapp., 17 (3), pp. 143-155
Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., Johansen-Berg, H., Bannister, P.R., Matthews, P.M., Advances in functional and structural MR image analysis and implementation as FSL (2004) Neuroimage, 23, pp. S208-S219
Smitha, K.A., Akhil Raja, K., Arun, K.M., Rajesh, P.G., Thomas, B., Kapilamoorthy, T.R., Kesavadas, C., Resting state fMRI: a review on methods in resting state connectivity analysis and resting state networks (2017) Neuroradiol. J., , 1971400917697342
Supekar, K., Menon, V., Rubin, D., Musen, M., Greicius, M.D., Network analysis of intrinsic functional brain connectivity in Alzheimer's disease (2008) PLoS Comput. Biol., 4 (6)
Tahmasian, M., Eggers, C., Riedl, V., Sorg, C., Drzezga, A., Editorial: utilization of hybrid pet/mr in neuroimaging (2015) Basic Clin. Neurosci., 6 (3), p. 143
Vaishnavi, S.N., Vlassenko, A.G., Rundle, M.M., Snyder, A.Z., Mintun, M.A., Raichle, M.E., Regional aerobic glycolysis in the human brain (2010) Proc. Natl. Acad. Sci., 107 (41), pp. 17757-17762
Varrone, A., Asenbaum, S., Vander Borght, T., Booij, J., Nobili, F., Någren, K., Darcourt, J., Van Laere, K., European Association of Nuclear Medicine Neuroimaging Committee. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2 (2009) Eur. J. Nucl. Med. Mol. Imaging, 36 (12), pp. 2103-2110
Vemuri, P., Jones, D.T., Jack, C.R., Resting state functional MRI in Alzheimer's Disease (2012) Alzheimer's Res. Ther., 4 (1), p. 2
Wehrl, H.F., Sauter, A.W., Divine, M.R., Pichler, B.J., Combined PET/MR: a technology becomes mature (2015) J. Nucl. Med., 56 (2), pp. 165-168
Xie, C., Bai, F., Yuan, B., Yu, H., Shi, Y., Yuan, Y., Wu, D., Zhang, Z., Joint effects of gray matter atrophy and altered functional connectivity on cognitive deficits in amnestic mild cognitive impairment patients (2015) Psychol. Med., 45 (9), pp. 1799-1810
Yakushev, I., Landvogt, C., Buchholz, H.G., Fellgiebel, A., Hammers, A., Scheurich, A., Schmidtmann, I., Bartenstein, P., The choice of the reference area in 18F-FDG brain PET imaging of Alzheimer's disease (2007) Psychiatry Res.
Yap, K.H., Ung, W.C., Ebenezer, E.G.M., Nordin, N., Chin, P.S., Sugathan, S., Chan, S.C., Tang, T.B., Visualizing hyperactivation in neurodegeneration based on prefrontal oxygenation: a comparative study of mild Alzheimer's disease, mild cognitive impairment, and healthy controls (2017) Front. Aging Neurosci., 9, p. 287
Yeo, B.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., Roffman, J.L., Buckner, R.L., The organization of the human cerebral cortex estimated by intrinsic functional connectivity (2011) J. neurophysiology, 106 (3), pp. 1125-1165
Zang, Y., Jiang, T., Lu, Y., He, Y., Tian, L., Regional homogeneity approach to fMRI data analysis (2004) Neuroimage, 22 (1), pp. 394-400
Zhang, H.Y., Wang, S.J., Liu, B., Ma, Z.L., Yang, M., Zhang, Z.J., Teng, G.J., Resting brain connectivity: changes during the progress of Alzheimer disease (2010) Radiology, 256 (2), pp. 598-606
Zhou, M., Hu, X., Lu, L., Zhang, L., Chen, L., Gong, Q., Huang, X., Intrinsic cerebral activity at resting state in adults with major depressive disorder: a meta-analysis (2017) Prog. Neuro-Psychopharmacology Biol. Psychiatry, 75, pp. 157-164
Zou, Q.H., Zhu, C.Z., Yang, Y., Zuo, X.N., Long, X.Y., Cao, Q.J., Wang, Y.F., Zang, Y.F., An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF (2008) J. Neurosci. methods, 172 (1), pp. 137-141
Zuo, X.N., Di Martino, A., Kelly, C., Shehzad, Z.E., Gee, D.G., Klein, D.F., Castellanos, F.X., Milham, M.P., The oscillating brain: complex and reliable (2010) Neuroimage, 49 (2), pp. 1432-1445
Simultaneous resting-state FDG-PET/fMRI in Alzheimer Disease: Relationship between glucose metabolism and intrinsic activity
Simultaneously evaluating resting-state brain glucose metabolism and
intrinsic functional activity has potential to impact the clinical
neurosciences of Alzheimer Disease (AD). Indeed, integrating such
combined information obtained in the same physiological setting may
clarify how impairments in neuroenergetic and neuronal function interact
and contribute to the mechanisms underlying AD. The present study used
this multimodality approach to investigate, by means of a hybrid PET/MR
scanner, the coupling between glucose consumption and intrinsic
functional activity in 23 patients with AD-related cognitive impairment
ranging from amnestic mild cognitive impairment (MCI) to mild-moderate
AD (aMCI/AD), in comparison with a group of 23 healthy elderly controls.
Between-group (Controls > Patients) comparisons were conducted on
data from both imaging modalities using voxelwise 2-sample t-tests,
corrected for partial-volume effects, head motion, age, gender and
multiple tests. FDG-PET/fMRI relationships were assessed within and
across subjects using Spearman partial correlations for three different
resting-state fMRI (rs-fMRI) metrics sensitive to AD: fractional
amplitude of low frequency fluctuations (fALFF), regional homogeneity
(ReHo) and group independent component analysis with dual regression
(gICA-DR). FDG and rs-fMRI metrics distinguished aMCI/AD from controls
according to spatial patterns analogous to those found in stand-alone
studies. Within-subject correlations were comparable across the three
rs-fMRI metrics. Correlations were overall high in healthy controls
(ρ = 0.80 ± 0.04), but showed a significant 17% reduction (p < 0.05)
in aMCI/AD patients (ρ = 0.67 ± 0.05). Positive across-subject
correlations were overall moderate (ρ = 0.33 ± 0.07) and consistent
across rs-fMRI metrics. These were confined around AD-target posterior
regions for metrics of functional connectivity (ReHo and gICA-DR). In
contrast, FDG/fALFF correlations were distributed in the frontal gyrus,
thalami and caudate nuclei. Taken together, these results support the
presence of bioenergetic coupling between glucose utilization and rapid
transmission of neural information in healthy ageing, which is
substantially reduced in aMCI/AD, suggesting that abnormal glucose
utilization is in some way linked to communication breakdown among brain
regions impacted by the underlying pathological process.
Simultaneous resting-state FDG-PET/fMRI in Alzheimer Disease: Relationship between glucose metabolism and intrinsic activity
Bruni AC, Bernardi L, Colao R, Rubino E, Smirne N, Frangipane F, Terni B, Curcio SA, Mirabelli M, Clodomiro A, Di Lorenzo R, Maletta R, Anfossi M, Gallo M, Geracitano S, Tomaino C, Muraca MG, Leotta A, Lio SG, Pinessi L, Rainero I, Sorbi S, Nee L, Milan G, Pappata S, Postiglione A, Abbamondi N, Forloni G, St George Hyslop P, Rogaeva E, Bugiani O, Giaccone G, Foncin JF, Spillantini MG, Puccio G * Worldwide distribution of PSEN1 Met146Leu mutation: A large variability for a founder mutation(894 views) Neurology (ISSN: 0028-3878, 1526-632x, 1526-632xelectronic), 2010 Mar 9; 74(10): 798-806. Impact Factor:8.017 ViewExport to BibTeXExport to EndNote