Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.
Biostructure and Bioimaging Institute, National Research Council, Naples, Italy. Electronic address: quarante@unina.it.
References: Aghighi, M., Golovko, D., Ansari, C., Marina, N.M., Pisani, L., Kurlander, L., Klenk, C., Daldrup-Link, H.E., Imaging tumor necrosis with ferumoxytol (2015) PLoS One, 10, pp. 1-1
Albert-weissenberger, C., Sirén, A., Experimental traumatic brain injury (2010) Exp. Transl. Stroke Med. August, 201, pp. 1-8
Anrather, J., Iadecola, C., Inflammation and stroke: an overview (2016) Neurotherapeutics, 13, pp. 661-670
Ansciaux, E., Burtea, C., Laurent, S., Crombez, D., Nonclercq, D., Vander Elst, L., Muller, R.N., In vitro and in vivo characterization of several functionalized ultrasmall particles of iron oxide, vectorized against amyloid plaques and potentially able to cross the blood-brain barrier: toward earlier diagnosis of Alzheimer's disease by molecular imag (2015) Contrast Media Mol. Imaging, 10, pp. 211-224
Badie, B., Schartner, J.M., Flow cytometric characterization of tumor-associated macrophages in experimental gliomas (2000) Neurosurgery, 46, pp. 957-962
Baeten, K., Hendriks, J.J.A., Hellings, N., Theunissen, E., Vanderlocht, J., De Ryck, L., Gelan, J., Adriaensens, P., Visualisation of the kinetics of macrophage infiltration during experimental autoimmune encephalomyelitis by magnetic resonance imaging (2008) J. Neuroimmunol., 195, pp. 1-6
Banati, R.B., Gehrmann, J., Schubert, P., Kreutzberg, G.W., Cytotoxicity of microglia (1993) Glia, 7, pp. 111-118
Bechmann, I., Galea, I., Perry, V.H., What is the blood-brain barrier (not)? (2007) Trends Immunol., 28, pp. 5-11
Becker, K.J., Targeting the central nervous system inflammatory response in ischemic stroke (2001) Curr. Opin. Neurol., 14, pp. 349-353
Berger, C., Hiestand, P., Kindler-Baumann, D., Rudin, M., Rausch, M., Analysis of lesion development during acute inflammation and remission in a rat model of experimental autoimmune encephalomyelitis by visualization of macrophage infiltration, demyelination and blood-brain barrier damage (2006) NMR Biomed., 19, pp. 101-107
Bernd, H., De Kerviler, E., Gaillard, S., Bonnemain, B., Safety and tolerability of ultrasmall superparamagnetic iron oxide contrast agent: comprehensive analysis of a clinical development program (2009) Invest. Radiol., 44, pp. 336-342
Berndt, D., Millward, J.M., Schnorr, J., Taupitz, M., Stangl, V., Paul, F., Wagner, S., Infante-Duarte, C., Inflammation-induced brain endothelial activation leads to uptake of electrostatically stabilized iron oxide nanoparticles via sulfated glycosaminoglycans (2017) Nanomed. Nanotechnol. Biol. Med., 13, pp. 1411-1421
Biernacki, K., Prat, A., Blain, M., Antel, J.P., Regulation of cellular and molecular trafficking across human brain endothelial cells by Th1- and Th2-polarized lymphocytes (2004) J. Neuropathol. Exp. Neurol., 63, pp. 223-232
Bitsch, A., Acute axonal injury in multiple sclerosis: correlation with demyelination and inflammation (2000) Brain, 123, pp. 1174-1183
Bjørnerud, A., Johansson, L., The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system (2004) NMR Biomed., 17, pp. 465-477
Brochet, B., Deloire, M.S.A.A., Touil, T., Anne, O., Caillé, J.M., Dousset, V., Petry, K.G., Early macrophage MRI of inflammatory lesions predicts lesion severity and disease development in relapsing EAE (2006) Neuroimage, 32, pp. 266-274
Bulte, J.W., Vymazal, J., Brooks, R.A., Pierpaoli, C., Frank, J.A., Frequency dependence of MR relaxation times. II. Iron oxides (1993) J. Magn. Reson. Imaging, 3, pp. 641-648
Cedervall, T., Lynch, I., Lindman, S., Berggard, T., Thulin, E., Nilsson, H., Dawson, K.A., Linse, S., Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles (2007) Proc. Natl. Acad. Sci., 104, pp. 2050-2055
Chin, C.L., Pai, M., Bousquet, P.F., Schwartz, A.J., O'Connor, E.M., Nelson, C.M., Hradil, V.P., Fox, G.B., Distinct spatiotemporal pattern of CNS lesions revealed by USPIO-enhanced MRI in MOG-induced EAE rats implicates the involvement of spino-olivocerebellar pathways (2009) J. Neuroimmunol., 211, pp. 49-55
Cho, T.H., Nighoghossian, N., Wiart, M., Desestret, V., Cakmak, S., Berthezène, Y., Derex, L., Hermier, M., USPIO-enhanced MRI of neuroinflammation at the sub-acute stage of ischemic stroke: preliminary data (2007) Cerebrovasc. Dis., 24, pp. 544-546
Corot, C., Robert, P., Idée, J.M., Port, M., Recent advances in iron oxide nanocrystal technology for medical imaging (2006) Adv. Drug. Deliv. Rev., 58, pp. 1471-1504
Couto, D., Freitas, M., Costa, V.M., Chisté, R.C., Almeida, A., Lopez-Quintela, M.A., Rivas, J., Fernandes, E., Biodistribution of polyacrylic acid-coated iron oxide nanoparticles is associated with proinflammatory activation and liver toxicity (2016) J. Appl. Toxicol., 36, pp. 1321-1331
Crimi, A., Commowick, O., Maarouf, A., Ferré, J.C., Bannier, E., Tourbah, A., Berry, I., Barillot, C., Predictive value of imaging markers at multiple sclerosis disease onset based on gadolinium- and USPIO-enhanced MRI and machine learning (2014) PLoS One, 9, pp. 1-10
da Fonseca, A.C.C., Matias, D., Garcia, C., Amaral, R., Geraldo, L.H., Freitas, C., Lima, F.R.S., The impact of microglial activation on blood-brain barrier in brain diseases (2014) Front. Cell. Neurosci., 8, p. 362
Deddens, L.H., van Tilborg, G.A.F., van der Toorn, A., van der Marel, K., Paulis, L.E.M., van Bloois, L., Storm, G., Dijkhuizen, R.M., MRI of ICAM-1 upregulation after stroke: the importance of choosing the appropriate target-specific particulate contrast agent (2013) Mol. Imaging Biol., 15, pp. 411-422
Deloire, M.S.A., Touil, T., Brochet, B., Dousset, V., Caillé, J.M., Petry, K.G., Macrophage brain infiltration in experimental autoimmune encephalomyelitis is not completely compromised by suppressed T-cell invasion: in vivo magnetic resonance imaging illustration in effective anti-VLA-4 antibody treatment (2004) Mult. Scler., 10, pp. 540-548
Denes, A., Vidyasagar, R., Feng, J., Narvainen, J., McColl, B.W., Kauppinen, R.A., Allan, S.M., Proliferating resident microglia after focal cerebral ischaemia in mice (2007) J. Cereb. Blood Flow. Metab., 27, pp. 1941-1953
Desestret, V., Brisset, J.C., Moucharrafie, S., Devillard, E., Nataf, S., Honnorat, J., Nighoghossian, N., Wiart, M., Early-stage investigations of ultrasmall superparamagnetic iron oxide-induced signal change after permanent middle cerebral artery occlusion in mice (2009) Stroke, 40, pp. 1834-1841
Di Marco, M., Sadun, C., Port, M., Guilbert, I., Couvreur, P., Dubernet, C., Di Marco, M., Dubernet, C., Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents (2007) Int. J. Nanomed., 2, pp. 609-622. , https://doi.org/citeulike-article-id:2348535
Dósa, E., Guillaume, D.J., Haluska, M., Lacy, C.A., Hamilton, B.E., Njus, J.M., Rooney, W.D., Neuwelt, E.A., Magnetic resonance imaging of intracranial tumors: intra-patient comparison of gadoteridol and ferumoxytol (2011) Neuro. Oncol., 13, pp. 251-260
Dousset, V., Ballarino, L., Delalande, C., Coussemacq, M., Canioni, P., Petry, K.G., Caille, J., Comparison of ultrasmall particles of iron oxide weighted, and gadolinium-enhanced T1-weighted MR images in rats with experimental autoimmune encephalomyelitis (1999) Am. J. Neuroradiol., pp. 223-227
Dousset, V., Gomez, C., Petry, K.G., Delalande, C., Caille, J.M., Dose and scanning delay using USPIO for central nervous system macrophage imaging (1999) Magn. Reson. Mater. Phys., Biol. Med., 8, pp. 185-189
Dousset, V., Brochet, B., Deloire, M.S.A., Lagoarde, L., Barroso, B., Caille, J.-M., Petry, K.G., MR imaging of relapsing multiple sclerosis patients using ultra-small-particle iron oxide and compared with gadolinium (2006) AJNR. Am. J. Neuroradiol., 27, pp. 1000-1005
Doyle, K.P., Quach, L.N., Arceuil, H.E.D., Buckwalter, M.S., Ferumoxytol administration does not alter infarct volume or the inflammatory response to stroke in mice (2015) Neurosci. Lett., 584, pp. 236-240
Duffy, B.A., Choy, M., Riegler, J., Wells, J.A., Anthony, D.C., Scott, R.C., Lythgoe, M.F., Imaging seizure-induced inflammation using an antibody targeted iron oxide contrast agent (2012) Neuroimage, 60, pp. 1149-1155
Engberink, R.D.O., Blezer, E.L.A., Hoff, E.I., Van Der Pol, S.M.A., Van Der Toorn, A., Dijkhuizen, R.M., De Vries, H.E., MRI of monocyte infiltration in an animal model of neuroinflammation using SPIO-labeled monocytes or free USPIO (2008) J. Cereb. Blood Flow. Metab., 28, pp. 841-851
Engelhardt, B., Sorokin, L., The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction (2009) Semin. Immunopathol.
Engelhardt, B., Wolburg, H., Mini review: transendothelial migration of leukocytes: through the front door or around the side of the house? (2004) Eur. J. Immunol., 34, pp. 2955-2963
Farrell, B.T., Hamilton, B.E., Dosa, E., Rimely, E., Nasseri, M., Gahramanov, S., Lacy, C.A., Neuwelt, E.A., Using iron oxide nanoparticles to diagnose CNS inflammatory diseases and PCNSL (2013) Neurology, 81, pp. 256-263
Floris, S., Blezer, E.L.A., Schreibelt, G., Döpp, E., Van Der Pol, S.M.A., Schadee-Eestermans, I.L., Nicolay, K., De Vries, H.E., Blood-brain barrier permeability and monocyte infiltration in experimental allergic encephalomyelitis: a quantitative MRI study (2004) Brain, 127, pp. 616-627
Foley, L.M., Hitchens, T.K., Ho, C., Janesko-Feldman, K.L., Melick, J.A., Bayir, H., Kochanek, P.M., Magnetic resonance imaging assessment of macrophage accumulation in mouse brain after experimental traumatic brain injury (2009) J. Neurotrauma, 26, pp. 1509-1519
Gauberti, M., Montagne, A., Marcos-Contreras, O.A., Le Béhot, A., Maubert, E., Vivien, D., Ultra-sensitive molecular MRI of vascular cell adhesion molecule-1 reveals a dynamic inflammatory penumbra after strokes (2013) Stroke, 44, pp. 1988-1996
Gkagkanasiou, M., Ploussi, A., Gazouli, M., Efstathopoulos, E.P., USPIO-enhanced MRI neuroimaging: a review (2016) J. Neuroimaging, 26, pp. 161-168
Greenwood, J., Heasman, S.J., Alvarez, J.I., Prat, A., Lyck, R., Engelhardt, B., Review: leucocyte-endothelial cell crosstalk at the blood-brain barrier: a prerequisite for successful immune cell entry to the brain (2011) Neuropathol. Appl. Neurobiol., 37, pp. 24-39
Henning, T.D., Wendland, M.F., Golovko, D., Sutton, E.J., Sennino, B., Malek, F., Bauer, J.S., Daldrup-Link, H., Relaxation effects of ferucarbotran-labeled mesenchymal stem cells at 1.5T and 3T: discrimination of viable from lysed cells (2009) Magn. Reson. Med., 62, pp. 325-332
Heyn, C., Bowen, C.V., Rutt, B.K., Foster, P.J., Detection threshold of single SPIO-labeled cells with FIESTA (2005) Magn. Reson. Med., 53, pp. 312-320
Hoyte, L.C., Brooks, K.J., Nagel, S., Akhtar, A., Chen, R., Mardiguian, S., McAteer, M.A., Sibson, N.R., Molecular magnetic resonance imaging of acute vascular cell adhesion molecule-1 expression in a mouse model of cerebral ischemia (2010) J. Cereb. Blood Flow. Metab., 30, pp. 1178-1187
Hunger, M., Budinger, E., Zhong, K., Angenstein, F., Visualization of acute focal lesions in rats with experimental autoimmune encephalomyelitis by magnetic nanoparticles, comparing different MRI sequences including phase imaging (2014) J. Magn. Reson. Imaging, 39, pp. 1126-1135
Ittrich, H., Peldschus, K., Raabe, N., Kaul, M., Adam, G., Ittrich, H., Superparamagnetic iron oxide nanoparticles in biomedicine: applications and developments in diagnostics and therapy Superparamagnetische Eisenoxid-Nanopartikel in der Biomedizin: Anwendungen und Entwicklungen in Diagnostik und Therapie (2013) Fortschr Röntgenstr, 185, pp. 1149-1166
Kerbrat, A., Combès, B., Commowick, O., Maarouf, A., Bannier, E., Ferré, J.C., Tourbah, A., Edan, G., USPIO-positive MS lesions are associated with greater tissue damage than gadolinium-positive-only lesions during 3-year follow-up (2017) Mult. Scler. J., 2017. , 135245851773614
Kirschbaum, K., Sonner, J.K., Zeller, M.W., Deumelandt, K., Bode, J., Sharma, R., Krüwel, T., Breckwoldt, M.O., In vivo nanoparticle imaging of innate immune cells can serve as a marker of disease severity in a model of multiple sclerosis (2016) Proc. Natl. Acad. Sci., 113, pp. 13227-13232
Kleinschnitz, C., Bendszus, M., Frank, M., Solymosi, L., Toyka, K.V., Stoll, G., In vivo monitoring of macrophage infiltration in experimental ischemic brain lesions by magnetic resonance imaging (2003) J. Cereb. Blood Flow. Metab., 23, pp. 1356-1361
Korchinski, D.J., Taha, M., Yang, R., Nathoo, N., Dunn, J.F., (2015) Iron Oxide as an MRI Contrast Agent for Cell Tracking, 8, pp. 15-29
Ladewig, G., Jestaedt, L., Misselwitz, B., Solymosi, L., Toyka, K., Bendszus, M., Stoll, G., Spatial diversity of blood-brain barrier alteration and macrophage invasion in experimental autoimmune encephalomyelitis: a comparative MRI study (2009) Exp. Neurol., 220, pp. 207-211
Lammers, P.T., Gremse, F., (2015) Theranostic USPIO-Loaded Microbubbles for Mediating and Monitoring Blood-Brain Barrier Permeation, 25, pp. 36-43. , Europe PMC Funders Group
Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L.V., Muller, R.N., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications (vol 108, pg 2064, 2008) (2008) Chem. Rev., 108, pp. 2064-2110
Ley, K., Laudanna, C., Cybulsky, M.I., Nourshargh, S., Getting to the site of inflammation: the leukocyte adhesion cascade updated (2007) Nat. Rev. Immunol., 7, pp. 678-689
Li, W., Tutton, S., Vu, A.T., Pierchala, L., Li, B.S.Y., Lewis, J.M., Prasad, P.V., Edelman, R.R., First-pass contrast-enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall superparamagnetic iron oxide (USPIO)-based blood pool agent (2005) J. Magn. Reson. Imaging, 21, pp. 46-52
Li, W., Salanitri, J., Tutton, S., Dunkle, E.E., Schneider, J.R., Caprini, J.A., Pierchala, L.N., Edelman, R.R., Lower extremity deep venous thrombosis: evaluation with ferumoxytol-enhanced MR imaging and dual-contrast mechanism–preliminary experience (2007) Radiology, 242, pp. 873-881
Linker, R.A., Kroner, A., Horn, T., Gold, R., Mäurer, M., Bendszus, M., Iron particle-enhanced visualization of inflammatory central nervous system lesions by high resolution: preliminary data in an animal model (2006) Am. J. Neuroradiol., 27, pp. 1225-1229. , https://doi.org/27/6/1225
Liu, D.-F., Qian, C., An, Y.-L., Chang, D., Ju, S.-H., Teng, G.-J., Magnetic resonance imaging of post-ischemic blood–brain barrier damage with PEGylated iron oxide nanoparticles (2014) Nanoscale, 6, pp. 15161-15167
Makela, A.V., Murrell, D.H., Parkins, K.M., Kara, J., Gaudet, J.M., Foster, P.J., Cellular imaging with MRI (2016) Top. Magn. Reson. Imaging., 25, pp. 177-186
Marinescu, M., Chauveau, F., Durand, A., Riou, A., Cho, T.H., Dencausse, A., Ballet, S., Wiart, M., Monitoring therapeutic effects in experimental stroke by serial USPIO-enhanced MRI (2013) Eur. Radiol., 23, pp. 37-47
Metz, S., Lohr, S., Settles, M., Beer, A., Woertler, K., Rummeny, E.J., Daldrup-Link, H.E., Ferumoxtran-10-enhanced MR imaging of the bone marrow before and after conditioning therapy in patients with non-Hodgkin lymphomas (2006) Eur. Radiol., 16, pp. 598-607
Mikita, J., Dubourdieu-Cassagno, N., Deloire, M.S., Vekris, A., Biran, M., Raffard, G., Brochet, B., Petry, K.G., Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration (2011) Mult. Scler. J., 17, pp. 2-15
Mishra, S.K., Kumar, B.S.H., Khushu, S., Singh, A.K., Gangenahalli, G., Early monitoring and quantitative evaluation of macrophage infiltration after experimental traumatic brain injury: a magnetic resonance imaging and flow cytometric analysis (2017) Mol. Cell. Neurosci., 78, pp. 25-34
Moghimi, S.M., Hunter, A.C., Recognition by macrophages and liver cells of opsonized phospholipid vesicles and phospholipid headgroups (2001) Pharm. Res., 18, pp. 1-8
Montagne, A., Gauberti, M., Macrez, R., Jullienne, A., Briens, A., Raynaud, J.S., Louin, G., Maubert, E., Ultra-sensitive molecular MRI of cerebrovascular cell activation enables early detection of chronic central nervous system disorders (2012) Neuroimage, 63, pp. 760-770
Mori, Y., Chen, T., Fujisawa, T., Kobashi, S., Ohno, K., Yoshida, S., Tago, Y., Yoshioka, Y., From cartoon to real time MRI: in vivo monitoring of phagocyte migration in mouse brain (2014) Sci. Rep., 4, pp. 4-10
Muldoon, L.L., Pagel, M.A., Kroll, R.A., Roman-Goldstein, S., Jones, R.S., Neuwelt, E.A., A physiological barrier distal to the anatomic blood-brain barrier in a model of transvascular delivery (1999) Am. J. Neuroradiol., 20, pp. 217-222
Naqvi, S., Samim, M., Abdin, M.Z., Ahmed, F.J., Maitra, A.N., Prashant, C.K., Dinda, A.K., Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress (2010) Int. J. Nanomed., 5, pp. 983-989
Neuwelt, E.A., Várallyay, P., Bagó, A.G., Muldoon, L.L., Nesbit, G., Nixon, R., Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumours (2004) Neuropathol. Appl. Neurobiol., 30, pp. 456-471
Oude Engberink, R.D., van der Pol, S.M.A., Döpp, E.A., de Vries, H.E., Blezer, E.L.A., Comparison of SPIO and USPIO for in vitro labeling of human monocytes: MR detection and cell function (2007) Radiology, 243, pp. 467-474
Ouyang, L., Zeng, S., Zheng, G., Lu, G.M., Early inflammatory response following traumatic brain injury in rabbits using USPIO- and Gd-enhanced MRI (2016) Biomed. Res. Int., 2016. , 8431987
Oweida, A.J., Dunn, E.A., Foster, P.J., Cellular imaging at 1.5 T: detecting cells in neuroinflammation using active labeling with superparamagnetic iron oxide (2004) Mol. Imaging, 3, pp. 85-95
Perry, V.H., Anthony, D.C., Bolton, S.J., Brown, H.C., The blood-brain barrier and the inflammatory response (1997) Mol. Med. Today, 3, pp. 335-341
Pirko, I., Johnson, A., Ciric, B., Gamez, J., Macura, S.I., Pease, L.R., Rodriguez, M., In vivo magnetic resonance imaging of immune cells in the central nervous system with superparamagnetic antibodies (2004) Faseb J., 18, pp. 179-182
Qiao, R., Jia, Q., Hüwel, S., Xia, R., Liu, T., Gao, F., Galla, H.J., Gao, M., Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier (2012) ACS Nano, 6, pp. 3304-3310
Quarantelli, M., MRI/MRS in neuroinflammation: methodology and applications (2015) Clin. Transl. Imaging, 3
Ransohoff, R.M., Kivisäkk, P., Kidd, G., Three or more routes for leukocyte migration into the central nervous system (2003) Nat. Rev. Immunol., 3, pp. 569-581
Rausch, M., Hiestand, P., Baumann, D., Cannet, C., Rudin, M., MRI-based monitoring of inflammation and tissue damage in acute and chronic relapsing EAE (2003) Magn. Reson. Med., 50, pp. 309-314
Rawji, K.S., Yong, V.W., The benefits and detriments of macrophages/microglia in models of multiple sclerosis (2013) Clin. Dev. Immunol., 2013. , 948976
Raynal, I., Prigent, P., Peyramaure, S., Najid, A., Rebuzzi, C., Corot, C., Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10 (2004) Invest. Radiol., 39, pp. 56-63
Richards, J.M.J., Shaw, C.A., Lang, N.N., Williams, M.C., Semple, S.I.K., MacGillivray, T.J., Gray, C., Newby, D.E., In vivo mononuclear cell tracking using superparamagnetic particles of iron oxide feasibility and safety in humans (2012) Circ. Cardiovasc. Imaging, 5, pp. 509-517
Robinson, K.M., Njus, J.M., Phillips, D.A., Proctor, T.M., Rooney, W.D., Jones, R.E., MR imaging of inflammation during myelin-specific t cell-mediated autoimmune attack in the EAE mouse spinal cord (2010) Mol. Imaging Biol., 12, pp. 240-249
Roggendorf, W., Strupp, S., Paulus, W., Distribution and characterization of microglia/macrophages in human brain tumors (1996) Acta Neuropathol, 92, pp. 288-293
Roose, D., Leroux, F., De Vocht, N., Guglielmetti, C., Pintelon, I., Adriaensen, D., Ponsaerts, P., Van Der Bals, S., Multimodal imaging of micron-sized iron oxide particles following in vitro and in vivo uptake by stem cells: down to the nanometer scale (2014) Contrast Media Mol. Imaging, 9, pp. 400-408
Ros, P.R., Freeny, P.C., Harms, S.E., Seltzer, S.E., Davis, P.L., Chan, T.W., Stillman, A.E., Nissenbaum, M.A., Hepatic MR imaging with ferumoxides: a multicenter clinical trial of the safety and efficacy in the detection of focal hepatic lesions (1995) Radiology, 196, pp. 481-488
Saleh, A., Schroeter, M., Jonkmanns, C., Hartung, H.-P., Modder, U., Jander, S., In vivo MRI of brain inflammation in human ischaemic stroke (2004) Brain, 127, pp. 1670-1677
Schäfer, R., Ayturan, M., Bantleon, R., Kehlbach, R., Siegel, G., Pintaske, J., Conrad, S., Weissert, R., The use of clinically approved small particles of iron oxide (SPIO) for labeling of mesenchymal stem cells aggravates clinical symptoms in experimental autoimmune encephalomyelitis and influences their in vivo distribution (2008) Cell Transplant., 17, pp. 923-941
Scharlach, C., Warmuth, C., Schellenberger, E., Determination of blood circulation times of superparamagnetic iron oxide nanoparticles by T2* relaxometry using ultrashort echo time (UTE) MRI (2015) Magn. Reson. Imaging, 33, pp. 1173-1177
Schroeter, M., Jander, S., Huitinga, I., Witte, O.W., Stoll, G., Phagocytic response in photochemically induced infarction of rat cerebral cortex: the role of resident microglia (1997) Stroke, 28, pp. 382-386
Schroeter, M., Franke, C., Stoll, G., Hoehn, M., Dynamic changes of magnetic resonance imaging abnormalities in relation to inflammation and glial responses after photothrombotic cerebral infarction in the rat brain (2001) Acta Neuropathol., 101, pp. 114-122
Séguin, R., Biernacki, K., Rotondo, R.L., Prat, A., Antel, J.P., Regulation and functional effects of monocyte migration across human brain-derived endothelial cells (2003) J. Neuropathol. Exp. Neurol., 62, pp. 412-419
Serres, S., Mardiguian, S., Campbell, S.J., McAteer, M.A., Akhtar, A., Krapitchev, A., Choudhury, R.P., Sibson, N.R., VCAM-1-targeted magnetic resonance imaging reveals subclinical disease in a mouse model of multiple sclerosis (2011) FASEB J., 25, pp. 4415-4422
Settles, M., Etzrodt, M., Kosanke, K., Schiemann, M., Zimmermann, A., Meier, R., Braren, R., Wildgruber, M., Different capacity of monocyte subsets to phagocytose iron-oxide nanoparticles (2011) PLoS One, 6
Shapiro, E.M., Skrtic, S., Sharer, K., Hill, J.M., Dunbar, C.E., Koretsky, A.P., MRI detection of single particles for cellular imaging (2004) Proc. Natl. Acad. Sci. U. S. A., 101, pp. 10901-10906
Siglienti, I., Bendszus, M., Kleinschnitz, C., Stoll, G., Cytokine profile of iron-laden macrophages: implications for cellular magnetic resonance imaging (2006) J. Neuroimmunol., 173, pp. 166-173
Simon, G.H., Bauer, J., Saborovski, O., Fu, Y., Corot, C., Wendland, M.F., Daldrup-Link, H.E., T1 and T2 relaxivity of intracellular and extracellular USPIO at 1.5T and 3T clinical MR scanning (2006) Eur. Radiol., 16, pp. 738-745
Singh, N., Jenkins, G.J.S., Asadi, R., Doak, S.H., Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION) (2010) Nano Rev., 1, p. 5358
Stoll, G., Jander, S., Schroeter, M., Inflammation and glial responses in ischemic brain lesions (1998) Prog. Neurobiol., 56, pp. 149-171
Stroh, A., Zimmer, C., Gutzeit, C., Jakstadt, M., Marschinke, F., Jung, T., Pilgrimm, H., Grune, T., Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages (2004) Free Radic. Biol. Med., 36, pp. 976-984
Tanaka, R., Komine-Kobayashi, M., Mochizuki, H., Yamada, M., Furuya, T., Migita, M., Shimada, T., Urabe, T., Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia (2003) Neuroscience, 117, pp. 531-539
Tarulli, E., Chaudhuri, J.D., Gretka, V., Hoyles, A., Morshead, C.M., Stanisz, G.J., Effectiveness of micron-sized superparamagnetic iron oxide particles as markers for detection of migration of bone marrow-derived mesenchymal stromal cells in a stroke model (2013) J. Magn. Reson. Imaging, 37, pp. 1409-1418
Taschner, C.A., Wetzel, S.G., Tolnay, M., Froehlich, J., Merlo, A., Radue, E.W., Characteristics of ultrasmall superparamagnetic iron oxides in patients with brain tumors (2005) AJR. Am. J. Roentgenol., 185, pp. 1477-1486
Tong, H.I., Kang, W., Shi, Y., Zhou, G., Lu, Y., Physiological function and inflamed-brain migration of mouse monocyte-derived macrophages following cellular uptake of superparamagnetic iron oxide nanoparticles - implication of macrophage-based drug delivery into the central nervous system (2016) Int. J. Pharm., 505, pp. 271-282
Toth, G.B., Varallyay, C.G., Horvath, A., Bashir, M.R., Choyke, P.L., Daldrup-Link, H.E., Dosa, E., Neuwelt, E.A., Current and potential imaging applications of ferumoxytol for magnetic resonance imaging (2017) Kidney Int., 92, pp. 47-66
Tourdias, T., Stéphanie Roggerone, M., Massimo Filippi, M., Mitsunori Kanagaki, M., Marco Rovaris, M., David, H., Miller, M., MD, P.V.D., Assessment of disease activity in multiple sclerosis phenotypes with combined gadolinium- and superparamagnetic iron oxid-enhanced (2012) MR Imaging. Radiology, 264, pp. 225-233
Trapp, B.D., Ransohoff, R., Rudick, R., Axonal pathology in multiple sclerosis: relationship to neurologic disability (1999) Curr. Opin. Neurol., 12, pp. 295-302
Turkbey, B., Agarwal, H.K., Shih, J., Bernardo, M., McKinney, Y.L., Daar, D., Griffiths, G.L., Choyke, P.L., A phase i dosing study of ferumoxytol for MR lymphography at 3 t in patients with prostate cancer (2015) Am. J. Roentgenol., 205, pp. 64-69
Tysiak, E., Asbach, P., Aktas, O., Waiczies, H., Smyth, M., Schnorr, J., Taupitz, M., Wuerfel, J., Beyond blood brain barrier breakdown - in vivo detection of occult neuroinflammatory foci by magnetic nanoparticles in high field MRI (2009) J. Neuroinflammation, 6, pp. 2-9
van Kasteren, S.I., Campbell, S.J., Serres, S., Anthony, D.C., Sibson, N.R., Davis, B.G., Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 18-23
Vellinga, M.M., Oude Engberink, R.D., Seewann, A., Pouwels, P.J.W., Wattjes, M.P., Van Der Pol, S.M.A., Pering, C., Barkhof, F., Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement (2008) Brain, 131, pp. 800-807
Vellinga, M.M., Vrenken, H., Hulst, H.E., Polman, C.H., Uitdehaag, B.M.J., Pouwels, P.J.W., Barkhof, F., Geurts, J.J.G., Use of ultrasmall superparamagnetic particles of iron oxide (USPIO)-enhanced mri to demonstrate diffuse inflammation in the normal-appearing white matter (NAWM) of multiple sclerosis (MS) patients: an exploratory study (2009) J. Magn. Reson. Imaging, 29, pp. 774-779
Verma, J., Lal, S., Van Noorden, C.J.F., Nanoparticles for hyperthermic therapy: synthesis strategies and applications in glioblastoma (2014) Int. J. Nanomed., 9, pp. 2863-2877
Wang, Y.-X.J., Hussain, S.M., Krestin, G.P., Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging (2001) Eur. Radiol., 11, pp. 2319-2331
Wei, Y., Zhao, M., Yang, F., Mao, Y., Xie, H., Zhou, Q., iron overload by superparamagnetic iron oxide nanoparticles is a high risk factor in cirrhosis by a systems toxicology assessment (2016) Sci. Rep., 6, pp. 1-11
Weinstein, J.S., Varallyay, C.G., Dosa, E., Gahramanov, S., Hamilton, B., Rooney, W.D., Muldoon, L.L., Neuwelt, E.A., Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review (2010) J. Cereb. Blood Flow. Metab., 30, pp. 15-35
Weissleder, R., Ultrasmall Agents for Superparamagnetic of a New Class Iron Oxide: of Contrast (1990), pp. 489-493
Weissleder, R., Stark, D.D., Engelstad, B.L., Bacon, B.A., White, D.L., Jacobs, P., Lewis, J., Superparamagnetic pharmacokinetics iron oxide: and toxicity (1989) Am. J. Roentgenol., 152, pp. 167-173. , https://doi.org/0361-803X/89/1521-0167
Wiart, M., Davoust, N., Pialat, J.B., Desestret, V., Moucharaffie, S., Cho, T.H., Mutin, M., Berthezène, Y., MRI monitoring of neuroinflammation in mouse focal ischemia (2007) Stroke, 38, pp. 131-137
Winer, J.L., Liu, C.Y., Apuzzo, M.L.J., The use of nanoparticles as contrast media in neuroimaging: a statement on toxicity (2012) World Neurosurg., 78, pp. 709-711
Wolburg, H., Wolburg-Buchholz, K., Engelhardt, B., Diapedesis of mononuclear cells across cerebral venules during experimental autoimmune encephalomyelitis leaves tight junctions intact (2005) Acta Neuropathol., 109, pp. 181-190
Wuerfel, J., Tysiak, E., Prozorovski, T., Smyth, M., Mueller, S., Schnorr, J., Taupitz, M., Zipp, F., Mouse model mimics multiple sclerosis in the clinico-radiological paradox (2007) Eur. J. Neurosci., 26, pp. 190-198
Wunder, A., Klohs, J., Dirnagl, U., Non-invasive visualization of CNS inflammation with nuclear and optical imaging (2009) Neuroscience, 158, pp. 1161-1173
Xu, S., Jordan, E.K., Brocke, S., Bulte, J.W.M., Quigley, L., Tresser, N., Ostuni, J.L., Frank, J.A., Study of relapsing remitting experimental allergic encephalomyelitis SJL mouse model using MION-46L enhanced in vivo MRI: early histopathological correlation (1998) J. Neurosci. Res., 52, pp. 549-558
Yang, Y.M., Feng, X.Y., Yin, L.K., Li, C.C., Li, A.N., Jia, J., Wang, X., Jin, L.X., In vivo USPIO-enhanced MR signal characteristics of secondary degeneration in the ipsilateral substantia nigra after middle cerebral artery occlusion at 3T (2013) J. Neuroradiol., 40, pp. 198-203
Yang, R., Sarkar, S., Korchinski, D.J., Wu, Y., Yong, V.W.E., Dunn, J.F., MRI monitoring of monocytes to detect immune stimulating treatment response in brain tumor (2017) Neuro. Oncol., 19, pp. 364-371
Zhu, Y., Ling, Y., Zhong, J., Liu, X., Wei, K., Huang, S., Magnetic resonance imaging of radiation-induced brain injury using targeted microparticles of iron oxide (2012) Acta Radiol., 53, pp. 812-819
Zini, C., Venneri, M.A., Miglietta, S., Caruso, D., Porta, N., Isidori, A., Fiore, D., Laghi, A., USPIO-labeling in M1 and M2-polarized macrophages: an in vitro study using a clinical magnetic resonance scanner (2017) J. Cell. Physiol., 233, pp. 5823-5828
Superparamagnetic iron oxide nanocolloids in MRI studies of neuroinflammation
Abstract
Iron oxide (IO)
nanocolloids are being increasingly used to image cellular contribution
to neuroinflammation using MRI, as these particles are capable of
labeling circulating cells with phagocytic activity, allowing to assess
cell trafficking from the blood to neuroinflammation sites. The use of
IOs relies on the natural phagocytic properties of immune cells,
allowing their labeling either in vitro or directly in vivo, following
intravenous injection. Despite concerns on the specificity of the latter
approach, the widespread availability and relatively low cost of these
techniques, coupled to a sensitivity that allows to reach single cell
detection, have promoted their use in several preclinical and clinical
studies. In this review, we discuss the results of currently available
preclinical and clinical IO-enhanced MRI studies of immune cell
trafficking in neuroinflammation, examining the specificity of the
existing findings, in view of the different possible mechanisms
underlying IO accumulation in the brain. From this standpoint, we assess
the implications of the temporal and spatial differences in the
enhancement pattern of IOs, compared to gadolinium-based contrast
agents, a clinically established MRI marker blood-brain barrier
breakdown. While concerns on the specificity of cell labeling obtained
using the in-vivo labeling approach still need to be fully addressed,
these techniques have indeed proved able to provide additional
information on neuroinflammatory phenomena, as compared to conventional
Gadolinium-enhanced MRI.
Superparamagnetic iron oxide nanocolloids in MRI studies of neuroinflammation
No results.
Superparamagnetic iron oxide nanocolloids in MRI studies of neuroinflammation