Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, Napoli, 80134, Italy
References: Potente, M., Gerhardt, H., Carmeliet, P., Basic and therapeutic aspects of angiogenesis (2011) Cell, 146 (6), pp. 873-88
Swift, M.R., Weinstein, B.M., Arterial-venous specification during development (2009) Circ. Res., 104 (5), pp. 576-588
Jain, R.K., Molecular regulation of vessel maturation (2003) Nat. Med., 9 (6), pp. 685-693
Adams, R.H., Alitalo, K., Molecular regulation of angiogenesis and lymphangiogenesis (2007) Nat. Rev. Mol. Cell Biol., 8 (6), pp. 464-478
Tang, N., Wang, L., Esko, J., Giordano, F.J., Huang, Y., Gerber, H.P., Ferrara, N., Johnson, R.S., Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis (2004) Cancer Cell, 6 (5), pp. 485-495
Krock, B.L., Skuli, N., Simon, M.C., Hypoxia-induced angiogenesis: good and evil (2011) Genes Cancer, 2 (12), pp. 1117-1133
Carmeliet, P., Mechanisms of angiogenesis and arteriogenesis (2000) Nat. Med., 6 (4), pp. 389-395
Heil, M., Eitenmuller, I., Schmitz-Rixen, T., Schaper, W., Arteriogenesis versus angiogenesis: similarities and differences (2006) J. Cell Mol. Med., 10 (1), pp. 45-55
Herbert, S.P., Stainier, D.Y., Molecular control of endothelial cell behaviour during blood vessel morphogenesis (2011) Nat. Rev. Mol. Cell Biol., 12 (9), pp. 551-564
Carmeliet, P., Jain, R.K., Molecular mechanisms and clinical applications of angiogenesis (2011) Nature, 473 (7347), pp. 298-307
Eilken, H.M., Adams, R.H., Dynamics of endothelial cell behavior in sprouting angiogenesis (2010) Curr. Opin. Cell Biol., 22 (5), pp. 617-625
Folkman, J., Klagsbrun, M., Angiogenic factors (1987) Science, 235 (4787), pp. 442-447
Jeong, H.W., Hernandez-Rodriguez, B., Kim, J., Kim, K.P., Enriquez-Gasca, R., Yoon, J., Adams, S., Adams, R.H., Transcriptional regulation of endothelial cell behavior during sprouting angiogenesis (2017) Nat. Commun., 8 (1), p. 726
Moreira-Soares, M., Coimbra, R., Rebelo, L., Carvalho, J., R, D.M.T., Angiogenic factors produced by hypoxic cells are a leading driver of anastomoses in sprouting angiogenesis-a computational study (2018) Sci. Rep., 8 (1), p. 8726
Coultas, L., Chawengsaksophak, K., Rossant, J., Endothelial cells and VEGF in vascular development (2005) Nature, 438 (7070), pp. 937-945
Abhinand, C.S., Raju, R., Soumya, S.J., Arya, P.S., Sudhakaran, P.R., VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis (2016) J Cell Commun Signal, 10 (4), pp. 347-354
Augustin, H.G., Koh, G.Y., Thurston, G., Alitalo, K., Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system (2009) Nat. Rev. Mol. Cell Biol., 10 (3), pp. 165-177
Eelen, G., Cruys, B., Welti, J., De Bock, K., Carmeliet, P., Control of vessel sprouting by genetic and metabolic determinants (2013) Trends Endocrinol. Metabol., 24 (12), pp. 589-596
De Bock, K., Georgiadou, M., Schoors, S., Kuchnio, A., Wong, B.W., Cantelmo, A.R., Quaegebeur, A., Carmeliet, P., Role of PFKFB3-driven glycolysis in vessel sprouting (2013) Cell, 154 (3), pp. 651-663
Schoors, S., Bruning, U., Missiaen, R., Queiroz, K.C.S., Borgers, G., Elia, I., Zecchin, A., Carmeliet, P., Fatty acid carbon is essential for dNTP synthesis in endothelial cells (vol 520, pg 192, 2015) (2015) Nature, 526 (7571). , 144-144
Mack, J.J., Iruela-Arispe, M.L., NOTCH regulation of the endothelial cell phenotype (2018) Curr. Opin. Hematol., 25 (3), pp. 212-218
Jakobsson, L., Franco, C.A., Bentley, K., Collins, R.T., Ponsioen, B., Aspalter, I.M., Rosewell, I., Gerhardt, H., Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting (2010) Nat. Cell Biol., 12 (10), pp. 943-953
Hayward, P., Kalmar, T., Arias, A.M., Wnt/Notch signalling and information processing during development (2008) Development, 135 (3), pp. 411-424
Real-Hohn, A., Zancan, P., Da Silva, D., Martins, E.R., Salgado, L.T., Mermelstein, C.S., Gomes, A.M.O., Sola-Penna, M., Filamentous actin and its associated binding proteins are the stimulatory site for 6-phosphofructo-1-kinase association within the membrane of human erythrocytes (2010) Biochimie, 92 (5), pp. 538-544
Rohlenova, K., Veys, K., Miranda-Santos, I., De Bock, K., Carmeliet, P., Endothelial cell metabolism in health and disease (2018) Trends Cell Biol., 28 (3), pp. 224-236
Demidova-Rice, T.N., Hamblin, M.R., Herman, I.M., Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 1: normal and chronic wounds: biology, causes, and approaches to care (2012) Adv. Skin Wound Care, 25 (7), pp. 304-314
Carmeliet, P., Angiogenesis in health and disease (2003) Nat. Med., 9 (6), pp. 653-660
Folkman, J., Angiogenesis: an organizing principle for drug discovery? (2007) Nat. Rev. Drug Discov., 6 (4), pp. 273-286
D'Alessio, A., Moccia, F., Li, J.H., Micera, A., Kyriakides, T.R., Angiogenesis and vasculogenesis in health and disease (2015) BioMed Res. Int., 2015, p. 126582
Secomb, T.W., Pries, A.R., Microvascular plasticity: angiogenesis in health and disease - preface (2016) Microcirculation, 23 (2), pp. 93-94
Hall, H., Modified fibrin hydrogel matrices: both, 3D-scaffolds and local and controlled release systems to stimulate angiogenesis (2007) Curr. Pharmaceut. Des., 13 (35), pp. 3597-3607
Hegen, A., Blois, A., Tiron, C.E., Hellesoy, M., Micklem, D.R., Nor, J.E., Akslen, L.A., Lorens, J.B., Efficient in vivo vascularization of tissue-engineering scaffolds (2011) J Tissue Eng Regen Med, 5 (4), pp. e52-62
Takeshita, S., Zheng, L.P., Brogi, E., Kearney, M., Pu, L.Q., Bunting, S., Ferrara, N., Isner, J.M., Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model (1994) J. Clin. Invest., 93 (2), pp. 662-670
Pacilli, A., Faggioli, G., Stella, A., Pasquinelli, G., An update on therapeutic angiogenesis for peripheral vascular disease (2010) Ann. Vasc. Surg., 24 (2), pp. 258-268
Chu, H., Wang, Y., Therapeutic angiogenesis: controlled delivery of angiogenic factors (2012) Ther. Deliv., 3 (6), pp. 693-714
Van Hove, A.H., Benoit, D.S., Depot-based delivery systems for pro-angiogenic peptides: a review (2015) Front Bioeng Biotechnol, 3, p. 102
Steed, D.L., Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity diabetic ulcers. Diabetic Ulcer Study Group (1995) J. Vasc. Surg., 21 (1), pp. 71-78. , discussion 79-81
Dvorak, H.F., Discovery of vascular permeability factor (VPF) (2006) Exp. Cell Res., 312 (5), pp. 522-526
Ferrara, N., Henzel, W.J., Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells (1989) Biochem. Biophys. Res. Commun., 161 (2), pp. 851-858
Ogawa, S., Oku, A., Sawano, A., Yamaguchi, S., Yazaki, Y., Shibuya, M., A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain (1998) J. Biol. Chem., 273 (47), pp. 31273-31282
Yamazaki, Y., Tokunaga, Y., Takani, K., Morita, T., C-terminal heparin-binding peptide of snake venom VEGF specifically blocks VEGF-stimulated endothelial cell proliferation (2005) Pathophysiol. Haemostasis Thrombosis, 34 (4-5), pp. 197-199
Peach, C.J., Mignone, V.W., Arruda, M.A., Alcobia, D.C., Hill, S.J., Kilpatrick, L.E., Woolard, J., Molecular pharmacology of VEGF-A isoforms: binding and signalling at VEGFR2 (2018) Int. J. Mol. Sci., 19 (4), p. 1264
Eichmann, A., Simons, M., VEGF signaling inside vascular endothelial cells and beyond (2012) Curr. Opin. Cell Biol., 24 (2), pp. 188-193
Tischer, E., Mitchell, R., Hartman, T., Silva, M., Gospodarowicz, D., Fiddes, J.C., Abraham, J.A., The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing (1991) J. Biol. Chem., 266 (18), pp. 11947-11954
Guyot, M., Pages, G., VEGF splicing and the role of VEGF splice variants: from physiological-pathological conditions to specific pre-mRNA splicing (2015) Methods Mol. Biol., 1332, pp. 3-23
Woolard, J., Bevan, H.S., Harper, S.J., Bates, D.O., Molecular diversity of VEGF-A as a regulator of its biological activity (2009) Microcirculation, 16 (7), pp. 572-592
Olsson, A.K., Dimberg, A., Kreuger, J., Claesson-Welsh, L., VEGF receptor signalling - in control of vascular function (2006) Nat. Rev. Mol. Cell Biol., 7 (5), pp. 359-371
Nowak, D.G., Woolard, J., Amin, E.M., Konopatskaya, O., Saleem, M.A., Churchill, A.J., Ladomery, M.R., Bates, D.O., Expression of pro- and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors (2008) J. Cell Sci., 121, pp. 3487-3495
Woolard, J., Wang, W.Y., Bevan, H.S., Qiu, Y., Morbidelli, L., Pritchard-Jones, R.O., Cui, T.G., Bates, D.O., VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression (2004) Cancer Res., 64 (21), pp. 7822-7835
Krilleke, D., DeErkenez, A., Schubert, W., Giri, I., Robinson, G.S., Ng, Y.S., Shima, D.T., Molecular mapping and functional characterization of the VEGF164 heparin-binding domain (2007) J. Biol. Chem., 282 (38), pp. 28045-28056
Lee, T.Y., Folkman, J., Javaherian, K., HSPG-binding peptide corresponding to the exon 6a-encoded domain of VEGF inhibits tumor growth by blocking angiogenesis in murine model (2010) PloS One, 5 (4), p. e9945
Houck, K.A., Ferrara, N., Winer, J., Cachianes, G., Li, B., Leung, D.W., The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA (1991) Mol. Endocrinol., 5 (12), pp. 1806-1814
Houck, K.A., Leung, D.W., Rowland, A.M., Winer, J., Ferrara, N., Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms (1992) J. Biol. Chem., 267 (36), pp. 26031-26037
Eswarappa, S.M., Potdar, A.A., Koch, W.J., Fan, Y., Vasu, K., Lindner, D., Willard, B., Fox, P.L., Programmed translational readthrough generates antiangiogenic VEGF-Ax (2014) Cell, 157 (7), pp. 1605-1618
Xin, H., Zhong, C., Nudleman, E., Ferrara, N., Evidence for pro-angiogenic functions of VEGF-ax (2016) Cell, 167 (1), pp. 275-284 e6
Simons, M., Gordon, E., Claesson-Welsh, L., Mechanisms and regulation of endothelial VEGF receptor signalling (2016) Nat. Rev. Mol. Cell Biol., 17 (10), pp. 611-625
Joukov, V., Pajusola, K., Kaipainen, A., Chilov, D., Lahtinen, I., Kukk, E., Saksela, O., Alitalo, K., A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases (1996) EMBO J., 15 (7), p. 1751
Cudmore, M.J., Hewett, P.W., Ahmad, S., Wang, K.Q., Cai, M., Al-Ani, B., Fujisawa, T., Ahmed, A., The role of heterodimerization between VEGFR-1 and VEGFR-2 in the regulation of endothelial cell homeostasis (2012) Nat. Commun., 3, p. 972
Kawamura, H., Li, X., Welsh, M., Claesson-Welsh, L., VEGF signal tranduction in angiogenesis (2008) Angiogenesis: an Integrative Approach from Science to Medicine, pp. 205-216. , W. Figg J. Folkman Springer New York
Albuquerque, R.J., The newest member of the VEGF family (2013) Blood, 121 (20), pp. 4015-4016
Hagberg, C.E., Falkevall, A., Wang, X., Larsson, E., Huusko, J., Nilsson, I., van Meeteren, L.A., Eriksson, U., Vascular endothelial growth factor B controls endothelial fatty acid uptake (2010) Nature, 464 (7290), pp. 917-921
Fischer, C., Mazzone, M., Jonckx, B., Carmeliet, P., FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? (2008) Nat. Rev. Canc., 8 (12), pp. 942-956
Dobrowolski, R., De Robertis, E.M., Endocytic control of growth factor signalling: multivesicular bodies as signalling organelles (2011) Nat. Rev. Mol. Cell Biol., 13 (1), pp. 53-60
Platta, H.W., Stenmark, H., Endocytosis and signaling (2011) Curr. Opin. Cell Biol., 23 (4), pp. 393-403
Simons, M., An inside view: VEGF receptor trafficking and signaling (2012) Physiology, 27 (4), pp. 213-222
Lampugnani, M.G., Orsenigo, F., Gagliani, M.C., Tacchetti, C., Dejana, E., Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments (2006) J. Cell Biol., 174 (4), pp. 593-604
Smith, G.A., Fearnley, G.W., Tomlinson, D.C., Harrison, M.A., Ponnambalam, S., The cellular response to vascular endothelial growth factors requires co-ordinated signal transduction, trafficking and proteolysis (2015) Biosci. Rep., 35 (5)
Gourlaouen, M., Welti, J.C., Vasudev, N.S., Reynolds, A.R., Essential role for endocytosis in the growth factor-stimulated activation of ERK1/2 in endothelial cells (2013) J. Biol. Chem., 288 (11), pp. 7467-7480
Koch, S., Claesson-Welsh, L., Signal transduction by vascular endothelial growth factor receptors (2012) Cold Spring Harb Perspect Med, 2 (7)
Chen, T.T., Luque, A., Lee, S., Anderson, S.M., Segura, T., Iruela-Arispe, M.L., Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells (2010) J. Cell Biol., 188 (4), pp. 595-609
Mamluk, R., Gechtman, Z., Kutcher, M.E., Gasiunas, N., Gallagher, J., Klagsbrun, M., Neuropilin-1 binds vascular endothelial growth factor 165, placenta growth factor-2, and heparin via its b1b2 domain (2002) J. Biol. Chem., 277 (27), pp. 24818-24825
Gu, C., Limberg, B.J., Whitaker, G.B., Perman, B., Leahy, D.J., Rosenbaum, J.S., Ginty, D.D., Kolodkin, A.L., Characterization of neuropilin-1 structural features that confer binding to semaphorin 3A and vascular endothelial growth factor 165 (2002) J. Biol. Chem., 277 (20), pp. 18069-18076
Huang, K., Andersson, C., Roomans, G.M., Ito, N., Claesson-Welsh, L., Signaling properties of VEGF receptor-1 and -2 homo- and heterodimers (2001) Int. J. Biochem. Cell Biol., 33 (4), pp. 315-324
Nilsson, I., Bahram, F., Li, X., Gualandi, L., Koch, S., Jarvius, M., Soderberg, O., Claesson-Welsh, L., VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts (2010) EMBO J., 29 (8), pp. 1377-1388
Fearnley, G.W., Smith, G.A., Abdul-Zani, I., Yuldasheva, N., Mughal, N.A., Homer-Vanniasinkam, S., Kearney, M.T., Ponnambalam, S., VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis (2016) Biol Open, 5 (5), pp. 571-583
Clegg, L.W., Mac Gabhann, F., Site-Specific Phosphorylation of VEGFR2 Is Mediated by Receptor Trafficking: insights from a Computational Model (2015) PLoS Comput. Biol., 11 (6)
Ballmer-Hofer, K., Andersson, A.E., Ratcliffe, L.E., Berger, P., Neuropilin-1 promotes VEGFR-2 trafficking through Rab11 vesicles thereby specifying signal output (2011) Blood, 118 (3), pp. 816-826
Suffert, F., Delestre, G., Carpentier, F., Gazeau, G., Walker, A.S., Gelisse, S., Duplaix, C., Fashionably late partners have more fruitful encounters: impact of the timing of co-infection and pathogenicity on sexual reproduction in Zymoseptoria tritici (2016) Fungal Genet. Biol., 92, pp. 40-49
Uppalapati, M., Lee, D.J., Mandal, K., Li, H., Miranda, L.P., Lowitz, J., Kenney, J., Sidhu, S.S., A potent d-protein antagonist of VEGF-A is nonimmunogenic, metabolically stable, and longer-circulating in vivo (2016) ACS Chem. Biol., 11 (4), pp. 1058-1065
Lobner, E., Humm, A.S., Mlynek, G., Kubinger, K., Kitzmuller, M., Traxlmayr, M.W., Djinovic-Carugo, K., Obinger, C., Two-faced Fcab prevents polymerization with VEGF and reveals thermodynamics and the 2.15 A crystal structure of the complex (2017) mAbs, 9 (7), pp. 1088-1104
Koenig, P., Lee, C.V., Sanowar, S., Wu, P., Stinson, J., Harris, S.F., Fuh, G., Deep sequencing-guided design of a high affinity dual specificity antibody to target two angiogenic factors in neovascular age-related macular degeneration (2015) J. Biol. Chem., 290 (36), pp. 21773-21786
Muller, Y.A., Christinger, H.W., Keyt, B.A., de Vos, A.M., The crystal structure of vascular endothelial growth factor (VEGF) refined to 1.93 A resolution: multiple copy flexibility and receptor binding (1997) Structure, 5 (10), pp. 1325-1338
Pan, B., Li, B., Russell, S.J., Tom, J.Y., Cochran, A.G., Fairbrother, W.J., Solution structure of a phage-derived peptide antagonist in complex with vascular endothelial growth factor (2002) J. Mol. Biol., 316 (3), pp. 769-787
Wiesmann, C., Christinger, H.W., Cochran, A.G., Cunningham, B.C., Fairbrother, W.J., Keenan, C.J., Meng, G., de Vos, A.M., Crystal structure of the complex between VEGF and a receptor-blocking peptide (1998) Biochemistry, 37 (51), pp. 17765-17772
Muller, Y.A., Chen, Y., Christinger, H.W., Li, B., Cunningham, B.C., Lowman, H.B., de Vos, A.M., VEGF and the Fab fragment of a humanized neutralizing antibody: crystal structure of the complex at 2.4 A resolution and mutational analysis of the interface (1998) Structure, 6 (9), pp. 1153-1167
Wiesmann, C., Fuh, G., Christinger, H.W., Eigenbrot, C., Wells, J.A., de Vos, A.M., Crystal structure at 1.7 A resolution of VEGF in complex with domain 2 of the Flt-1 receptor (1997) Cell, 91 (5), pp. 695-704
Christinger, H.W., Fuh, G., de Vos, A.M., Wiesmann, C., The crystal structure of placental growth factor in complex with domain 2 of vascular endothelial growth factor receptor-1 (2004) J. Biol. Chem., 279 (11), pp. 10382-10388
Iyer, S., Acharya, K.R., Tying the knot: the cystine signature and molecular-recognition processes of the vascular endothelial growth factor family of angiogenic cytokines (2011) FEBS J., 278 (22), pp. 4304-4322
Muller, Y.A., Heiring, C., Misselwitz, R., Welfle, K., Welfle, H., The cystine knot promotes folding and not thermodynamic stability in vascular endothelial growth factor (2002) J. Biol. Chem., 277 (45), pp. 43410-43416
Muller, Y.A., Li, B., Christinger, H.W., Wells, J.A., Cunningham, B.C., de Vos, A.M., Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site (1997) Proc. Natl. Acad. Sci. U. S. A., 94 (14), pp. 7192-7197
Keyt, B.A., Nguyen, H.V., Berleau, L.T., Duarte, C.M., Park, J., Chen, H., Ferrara, N., Identification of vascular endothelial growth factor determinants for binding KDR and FLT-1 receptors. Generation of receptor-selective VEGF variants by site-directed mutagenesis (1996) J. Biol. Chem., 271 (10), pp. 5638-5646
Iyer, S., Darley, P.I., Acharya, K.R., Structural insights into the binding of vascular endothelial growth factor-B by VEGFR-1(D2): recognition and specificity (2010) J. Biol. Chem., 285 (31), pp. 23779-23789
Starovasnik, M.A., Christinger, H.W., Wiesmann, C., Champe, M.A., de Vos, A.M., Skelton, N.J., Solution structure of the VEGF-binding domain of Flt-1: comparison of its free and bound states (1999) J. Mol. Biol., 293 (3), pp. 531-544
Gaucher, J.F., Reille-Seroussi, M., Gagey-Eilstein, N., Broussy, S., Coric, P., Seijo, B., Lascombe, M.B., Broutin, I., Biophysical Studies of the Induced Dimerization of Human VEGF Receptor 1 Binding Domain by Divalent Metals Competing with VEGF-A (2016) PloS One, 11 (12)
Markovic-Mueller, S., Stuttfeld, E., Asthana, M., Weinert, T., Bliven, S., Goldie, K.N., Kisko, K., Ballmer-Hofer, K., Structure of the full-length VEGFR-1 extracellular domain in complex with VEGF-A (2017) Structure, 25 (2), pp. 341-352
Brozzo, M.S., Bjelic, S., Kisko, K., Schleier, T., Leppanen, V.M., Alitalo, K., Winkler, F.K., Ballmer-Hofer, K., Thermodynamic and structural description of allosterically regulated VEGFR-2 dimerization (2012) Blood, 119 (7), pp. 1781-1788
Leppanen, V.M., Prota, A.E., Jeltsch, M., Anisimov, A., Kalkkinen, N., Strandin, T., Lankinen, H., Alitalo, K., Structural determinants of growth factor binding and specificity by VEGF receptor 2 (2010) Proc. Natl. Acad. Sci. U. S. A., 107 (6), pp. 2425-2430
Yang, Y., Xie, P., Opatowsky, Y., Schlessinger, J., Direct contacts between extracellular membrane-proximal domains are required for VEGF receptor activation and cell signaling (2010) Proc. Natl. Acad. Sci. U. S. A., 107 (5), pp. 1906-1911
Franklin, M.C., Navarro, E.C., Wang, Y., Patel, S., Singh, P., Zhang, Y., Persaud, K., Kussie, P., The structural basis for the function of two anti-VEGF receptor 2 antibodies (2011) Structure, 19 (8), pp. 1097-1107
Thieltges, K.M., Avramovic, D., Piscitelli, C.L., Markovic-Mueller, S., Binz, H.K., Ballmer-Hofer, K., Characterization of a drug-targetable allosteric site regulating vascular endothelial growth factor signaling (2018) Angiogenesis, 21 (3), pp. 533-543
Leppanen, V.M., Tvorogov, D., Kisko, K., Prota, A.E., Jeltsch, M., Anisimov, A., Markovic-Mueller, S., Alitalo, K., Structural and mechanistic insights into VEGF receptor 3 ligand binding and activation (2013) Proc. Natl. Acad. Sci. U. S. A., 110 (32), pp. 12960-12965
Mota, F., Fotinou, C., Rana, R.R., Chan, A.W.E., Yelland, T., Arooz, M.T., O'Leary, A.P., Djordjevic, S., Architecture and hydration of the arginine-binding site of neuropilin-1 (2018) FEBS J., 285 (7), pp. 1290-1304
Tsai, Y.C., Fotinou, C., Rana, R., Yelland, T., Frankel, P., Zachary, I., Djordjevic, S., Structural studies of neuropilin-2 reveal a zinc ion binding site remote from the vascular endothelial growth factor binding pocket (2016) FEBS J., 283 (10), pp. 1921-1934
Lee, C.C., Kreusch, A., McMullan, D., Ng, K., Spraggon, G., Crystal structure of the human neuropilin-1 b1 domain (2003) Structure, 11 (1), pp. 99-108
Appleton, B.A., Wu, P., Maloney, J., Yin, J., Liang, W.C., Stawicki, S., Mortara, K., Wiesmann, C., Structural studies of neuropilin/antibody complexes provide insights into semaphorin and VEGF binding (2007) EMBO J., 26 (23), pp. 4902-4912
Vander Kooi, C.W., Jusino, M.A., Perman, B., Neau, D.B., Bellamy, H.D., Leahy, D.J., Structural basis for ligand and heparin binding to neuropilin B domains (2007) Proc. Natl. Acad. Sci. U. S. A., 104 (15), pp. 6152-6157
Parker, M.W., Linkugel, A.D., Goel, H.L., Wu, T., Mercurio, A.M., Vander Kooi, C.W., Structural basis for VEGF-C binding to neuropilin-2 and sequestration by a soluble splice form (2015) Structure, 23 (4), pp. 677-687
Pellet-Many, C., Frankel, P., Jia, H., Zachary, I., Neuropilins: structure, function and role in disease (2008) Biochem. J., 411 (2), pp. 211-226
Meadows, K.L., Hurwitz, H.I., Anti-VEGF therapies in the clinic (2012) Cold Spring Harb Perspect Med, 2 (10), p. a006577
Grothey, A., Galanis, E., Targeting angiogenesis: progress with anti-VEGF treatment with large molecules (2009) Nat. Rev. Clin. Oncol., 6 (9), pp. 507-518
Tarallo, V., De Falco, S., The vascular endothelial growth factors and receptors family: up to now the only target for anti-angiogenesis therapy (2015) Int. J. Biochem. Cell Biol., 64, pp. 185-189
Gotink, K.J., Verheul, H.M., Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? (2010) Angiogenesis, 13 (1), pp. 1-14
Clarke, J.M., Hurwitz, H.I., Targeted inhibition of VEGF receptor 2: an update on ramucirumab (2013) Expet Opin. Biol. Ther., 13 (8), pp. 1187-1196
Holash, J., Davis, S., Papadopoulos, N., Croll, S.D., Ho, L., Russell, M., Boland, P., Rudge, J.S., VEGF-Trap: a VEGF blocker with potent antitumor effects (2002) Proc. Natl. Acad. Sci. U. S. A., 99 (17), pp. 11393-11398
Gragoudas, E.S., Adamis, A.P., Cunningham, E.T., Jr., Feinsod, M., Guyer, D.R., Pegaptanib for neovascular age-related macular degeneration (2004) N. Engl. J. Med., 351 (27), pp. 2805-2816
Rosenfeld, P.J., Brown, D.M., Heier, J.S., Boyer, D.S., Kaiser, P.K., Chung, C.Y., Kim, R.Y., Group, M.S., Ranibizumab for neovascular age-related macular degeneration (2006) N. Engl. J. Med., 355 (14), pp. 1419-1431
Garnock-Jones, K.P., Ranibizumab: in macular oedema following retinal vein occlusion (2011) Drugs, 71 (4), pp. 455-463
Hughes, G.C., Annex, B.H., Angiogenic therapy for coronary artery and peripheral arterial disease (2005) Expert Rev. Cardiovasc Ther., 3 (3), pp. 521-535
Shimamura, M., Nakagami, H., Taniyama, Y., Morishita, R., Gene therapy for peripheral arterial disease (2014) Expet Opin. Biol. Ther., 14 (8), pp. 1175-1184
Briquez, P.S., Clegg, L.E., Martino, M.M., Mac Gabhann, F., Hubbell, J.A., Design principles for therapeutic angiogenic materials (2016) Nat Rev Mater, 1 (1), p. 15006
Martino, M.M., Brkic, S., Bovo, E., Burger, M., Schaefer, D.J., Wolff, T., Gurke, L., Banfi, A., Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine (2015) Front Bioeng Biotechnol, 3, p. 45
Lange, C., Storkebaum, E., de Almodovar, C.R., Dewerchin, M., Carmeliet, P., Vascular endothelial growth factor: a neurovascular target in neurological diseases (2016) Nat. Rev. Neurol., 12 (8), pp. 439-454
D'Andrea, L.D., De Rosa, L., Vigliotti, C., Cataldi, M., VEGF mimic peptides: potential applications in central nervous system therapeutics (2017) New Horiz Transl Med, 3 (5), pp. 233-251
Licht, T., Keshet, E., Delineating multiple functions of VEGF-A in the adult brain (2013) Cell. Mol. Life Sci., 70 (10), pp. 1727-1737
Lee, I.L., Li, P.S., Yu, W.L., Shen, H.H., Prokaryotic expression, refolding, and purification of functional human vascular endothelial growth factor isoform 165: purification procedures and refolding conditions revisited (2011) Protein Expr. Purif., 76 (1), pp. 54-58
Pizarro, S.A., Gunson, J., Field, M.J., Dinges, R., Khoo, S., Dalal, M., Lee, M., Schmelzer, C.H., High-yield expression of human vascular endothelial growth factor VEGF(165) in Escherichia coli and purification for therapeutic applications (2010) Protein Expr. Purif., 72 (2), pp. 184-193
Mandal, K., Kent, S.B.H., Total chemical synthesis of biologically active vascular endothelial growth factor (2011) Angew. Chem. Int. Ed., 50 (35), pp. 8029-8033
Bhise, N.S., Shmueli, R.B., Sunshine, J.C., Tzeng, S.Y., Green, J.J., Drug delivery strategies for therapeutic angiogenesis and antiangiogenesis (2011) Expet Opin. Drug Deliv., 8 (4), pp. 485-504
Thomas, C.E., Ehrhardt, A., Kay, M.A., Progress and problems with the use of viral vectors for gene therapy (2003) Nat. Rev. Genet., 4 (5), pp. 346-358
Fosgerau, K., Hoffmann, T., Peptide therapeutics: current status and future directions (2015) Drug Discov. Today, 20 (1), pp. 122-128
Henninot, A., Collins, J.C., Nuss, J.M., The current state of peptide drug discovery: back to the future? (2018) J. Med. Chem., 61 (4), pp. 1382-1414
D'Andrea, L.D., Del Gatto, A., De Rosa, L., Romanelli, A., Pedone, C., Peptides targeting angiogenesis related growth factor receptors (2009) Curr. Pharmaceut. Des., 15 (21), pp. 2414-2429
Di Stasi, R., De Rosa, L., Romanelli, A., D'Andrea, L.D., Peptides interacting with growth factor receptors regulating angiogenesis (2016) Frontiers in Medicinal Chemistry, pp. 103-160. , Atta-ur-Rahman M.I. Choudhary A.B. Reitz Bentham Science
Li, S., Christensen, C., Kiselyov, V.V., Kohler, L.B., Bock, E., Berezin, V., Fibroblast growth factor-derived peptides: functional agonists of the fibroblast growth factor receptor (2008) J. Neurochem., 104 (3), pp. 667-682
Hansen, S.M., Kohler, L.B., Li, S., Kiselyov, V., Christensen, C., Owczarek, S., Bock, E., Berezin, V., NCAM-derived peptides function as agonists for the fibroblast growth factor receptor (2008) J. Neurochem., 106 (5), pp. 2030-2041
Ballinger, M.D., Shyamala, V., Forrest, L.D., Deuter-Reinhard, M., Doyle, L.V., Wang, J.X., Panganiban-Lustan, L., Kavanaugh, W.M., Semirational design of a potent, artificial agonist of fibroblast growth factor receptors (1999) Nat. Biotechnol., 17 (12), pp. 1199-1204
Cho, C.H., Kammerer, R.A., Lee, H.J., Steinmetz, M.O., Ryu, Y.S., Lee, S.H., Yasunaga, K., Koh, G.Y., COMP-Ang1: a designed angiopoietin-1 variant with nonleaky angiogenic activity (2004) Proc. Natl. Acad. Sci. U. S. A., 101 (15), pp. 5547-5552
Van Slyke, P., Alami, J., Martin, D., Kuliszewski, M., Leong-Poi, H., Sefton, M.V., Dumont, D., Acceleration of diabetic wound healing by an angiopoietin peptide mimetic (2009) Tissue Eng., 15 (6), pp. 1269-1280
Miklas, J.W., Dallabrida, S.M., Reis, L.A., Ismail, N., Rupnick, M., Radisic, M., QHREDGS enhances tube formation, metabolism and survival of endothelial cells in collagen-chitosan hydrogels (2013) PloS One, 8 (8)
Lin, X., Takahashi, K., Liu, Y., Derrien, A., Zamora, P.O., A synthetic, bioactive PDGF mimetic with binding to both alpha-PDGF and beta-PDGF receptors (2007) Growth Factors, 25 (2), pp. 87-93
Soro, S., Orecchia, A., Morbidelli, L., Lacal, P.M., Morea, V., Ballmer-Hofer, K., Ruffini, F., Failla, C.M., A proangiogenic peptide derived from vascular endothelial growth factor receptor-1 acts through alpha5beta1 integrin (2008) Blood, 111 (7), pp. 3479-3488
Pickart, L., The human tri-peptide GHK and tissue remodeling (2008) J. Biomater. Sci. Polym. Ed., 19 (8), pp. 969-988
Koczulla, R., von Degenfeld, G., Kupatt, C., Krotz, F., Zahler, S., Gloe, T., Issbrucker, K., Bals, R., An angiogenic role for the human peptide antibiotic LL-37/hCAP-18 (2003) J. Clin. Invest., 111 (11), pp. 1665-1672
Hardy, B., Raiter, A., Weiss, C., Kaplan, B., Tenenbaum, A., Battler, A., Angiogenesis induced by novel peptides selected from a phage display library by screening human vascular endothelial cells under different physiological conditions (2007) Peptides, 28 (3), pp. 691-701
Licht, T., Tsirulnikov, L., Reuveni, H., Yarnitzky, T., Ben-Sasson, S.A., Induction of pro-angiogenic signaling by a synthetic peptide derived from the second intracellular loop of S1P3 (EDG3) (2003) Blood, 102 (6), pp. 2099-2107
Cai, W., Salvador-Reyes, L.A., Zhang, W., Chen, Q.Y., Matthew, S., Ratnayake, R., Seo, S.J., Luesch, H., Apratyramide, a marine-derived peptidic stimulator of VEGF-A and other growth factors with potential application in wound healing (2018) ACS Chem. Biol., 13 (1), pp. 91-99
D'Andrea, L.D., Iaccarino, G., Fattorusso, R., Sorriento, D., Carannante, C., Capasso, D., Trimarco, B., Pedone, C., Targeting angiogenesis: structural characterization and biological properties of a de novo engineered VEGF mimicking peptide (2005) Proc. Natl. Acad. Sci. U. S. A., 102 (40), pp. 14215-14220
Diana, D., Ziaco, B., Colombo, G., Scarabelli, G., Romanelli, A., Fedone, C., Fattorusso, R., D'Andrea, L.D., Structural determinants of the unusual helix stability of a De Novo engineered vascular endothelial growth factor (VEGF) mimicking peptide (2008) Chem. Eur J., 14 (14), pp. 4164-4166
Ziaco, B., Diana, D., Capasso, D., Palumbo, R., Celentano, V., Di Stasi, R., Fattorusso, R., D'Andrea, L.D., C-terminal truncation of Vascular Endothelial Growth Factor mimetic helical peptide preserves structural and receptor binding properties (2012) Biochem. Biophys. Res. Commun., 424 (2), pp. 290-294
Di Stasi, R., Diana, D., Capasso, D., Di Gaetano, S., De Rosa, L., Celentano, V., Isernia, C., D'Andrea, L.D., VEGFR recognition interface of a proangiogenic VEGF-mimetic peptide determined in vitro and in the presence of endothelial cells by NMR spectroscopy (2018) Chemistry, 24 (44), pp. 11461-11466
Basile, A., Del Gatto, A., Diana, D., Di Stasi, R., Falco, A., Festa, M., Rosati, A., D'Andrea, L.D., Characterization of a designed vascular endothelial growth factor receptor antagonist helical peptide with antiangiogenic activity in vivo (2011) J. Med. Chem., 54 (5), pp. 1391-1400
Goncalves, V., Gautier, B., Garbay, C., Vidal, M., Inguimbert, N., Development of a chemiluminescent screening assay for detection of vascular endothelial growth factor receptor 1 ligands (2007) Anal. Biochem., 366 (1), pp. 108-110
Bonache, M.A., Balsera, B., Lopez-Mendez, B., Millet, O., Brancaccio, D., Gomez-Monterrey, I., Carotenuto, A., Gonzalez-Muniz, R., De novo designed library of linear helical peptides: an exploratory tool in the discovery of protein-protein interaction modulators (2014) ACS Comb. Sci., 16 (5), pp. 250-258
Dougher-Vermazen, M., Hulmes, J.D., Bohlen, P., Terman, B.I., Biological activity and phosphorylation sites of the bacterially expressed cytosolic domain of the KDR VEGF-receptor (1994) Biochem. Biophys. Res. Commun., 205 (1), pp. 728-738
Matsumoto, T., Bohman, S., Dixelius, J., Berge, T., Dimberg, A., Magnusson, P., Wang, L., Claesson-Welsh, L., VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis (2005) EMBO J., 24 (13), pp. 2342-2353
Finetti, F., Basile, A., Capasso, D., Di Gaetano, S., Di Stasi, R., Pascale, M., Turco, C.M., D'Andrea, L.D., Functional and pharmacological characterization of a VEGF mimetic peptide on reparative angiogenesis (2012) Biochem. Pharmacol., 84 (3), pp. 303-311
Santulli, G., Ciccarelli, M., Palumbo, G., Campanile, A., Galasso, G., Ziaco, B., Altobelli, G.G., Iaccarino, G., In vivo properties of the proangiogenic peptide QK (2009) J. Transl. Med., 7, p. 41
Chan, L.Y., Gunasekera, S., Henriques, S.T., Worth, N.F., Le, S.J., Clark, R.J., Campbell, J.H., Daly, N.L., Engineering pro-angiogenic peptides using stable, disulfide-rich cyclic scaffolds (2011) Blood, 118 (25), pp. 6709-6717
Dudar, G.K., D'Andrea, L.D., Di Stasi, R., Pedone, C., Wallace, J.L., A vascular endothelial growth factor mimetic accelerates gastric ulcer healing in an iNOS-dependent manner (2008) Am J Physiol-Gastr L, 295 (2), pp. G374-G381
Morbidelli, L., Chang, C.H., Douglas, J.G., Granger, H.J., Ledda, F., Ziche, M., Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium (1996) Am. J. Physiol., 270 (1), pp. H411-H415
Ziche, M., Morbidelli, L., Choudhuri, R., Zhang, H.T., Donnini, S., Granger, H.J., Bicknell, R., Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis (1997) J. Clin. Invest., 99 (11), pp. 2625-2634
Verheyen, A., Peeraer, E., Lambrechts, D., Poesen, K., Carmeliet, P., Shibuya, M., Pintelon, I., Meert, T., Therapeutic potential of vegf and vegf-derived peptide in peripheral neuropathies (2013) Neuroscience, 244, pp. 77-89
Pignataro, G., Ziaco, B., Tortiglione, A., Gala, R., Cuomo, O., Vinciguerra, A., Lapi, D., Cataldi, M., Neuroprotective effect of VEGF-mimetic peptide QK in experimental brain ischemia induced in rat by middle cerebral artery occlusion (2015) ACS Chem. Neurosci., 6 (9), pp. 1517-1525
Lee, J.S., Wagoner Johnson, A.J., Murphy, W.L., A modular, hydroxyapatite-binding version of vascular endothelial growth factor (2010) Adv. Mater. (Weinheim, Ger.), 22 (48), pp. 5494-5498
Wang, L., Zhao, M., Li, S., Erasquin, U.J., Wang, H., Ren, L., Chen, C., Cai, C., “Click” immobilization of a VEGF-mimetic peptide on decellularized endothelial extracellular matrix to enhance angiogenesis (2014) ACS Appl. Mater. Interfaces, 6 (11), pp. 8401-8406
Chan, T.R., Stahl, P.J., Yu, S.M., Matrix-bound VEGF mimetic peptides: design and endothelial cell activation in collagen scaffolds (2011) Adv. Funct. Mater., 21 (22), pp. 4252-4262
Stahl, P.J., Chan, T.R., Shen, Y.I., Sun, G., Gerecht, S., Yu, S.M., Capillary network-like organization of endothelial cells in PEGDA scaffolds encoded with angiogenic signals via triple helical hybridization (2014) Adv. Funct. Mater., 24 (21), pp. 3213-3225
Parthiban, S.P., Rana, D., Jabbari, E., Benkirane-Jessel, N., Ramalingam, M., Covalently immobilized VEGF-mimicking peptide with gelatin methacrylate enhances microvascularization of endothelial cells (2017) Acta Biomater., 51, pp. 330-340
Kambe, Y., Murakoshi, A., Urakawa, H., Kimurac, Y., Yamaoka, T., Vascular induction and cell infiltration into peptide-modified bioactive silk fibroin hydrogels (2017) J. Mater. Chem. B, 5 (36), pp. 7557-7571
Wang, X.M., Horii, A., Zhang, S.G., Designer functionalized self-assembling peptide nanofiber scaffolds for growth, migration, and tubulogenesis of human umbilical vein endothelial cells (2008) Soft Matter, 4 (12), pp. 2388-2395
Liu, X., Wang, X., Horii, A., Qiao, L., Zhang, S., Cui, F.Z., In vivo studies on angiogenic activity of two designer self-assembling peptide scaffold hydrogels in the chicken embryo chorioallantoic membrane (2012) Nanoscale, 4 (8), pp. 2720-2727
Webber, M.J., Tongers, J., Newcomb, C.J., Marquardt, K.T., Bauersachs, J., Losordo, D.W., Stupp, S.I., Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair (2011) Proc. Natl. Acad. Sci. U. S. A., 108 (33), pp. 13438-13443
Kumar, V.A., Liu, Q., Wickremasinghe, N.C., Shi, S.Y., Cornwright, T.T., Deng, Y.X., Azares, A., Hartgerink, J.D., Treatment of hind limb ischemia using angiogenic peptide nanofibers (2016) Biomaterials, 98, pp. 113-119
Mulyasasmita, W., Cai, L., Hori, Y., Heilshorn, S.C., Avidity-controlled delivery of angiogenic peptides from injectable molecular-recognition hydrogels (2014) Tissue Eng., 20 (15-16), pp. 2102-2114
Cai, L., Dinh, C.B., Heilshorn, S.C., One-pot synthesis of elastin-like polypeptide hydrogels with grafted VEGF-mimetic peptides (2014) Biomater Sci, 2 (5), pp. 757-765
Kim, Y., Liu, J.C., Protein-engineered microenvironments can promote endothelial differentiation of human mesenchymal stem cells in the absence of exogenous growth factors (2016) Biomater Sci, 4 (12), pp. 1761-1772
Van Hove, A.H., Beltejar, M.J., Benoit, D.S., Development and in vitro assessment of enzymatically-responsive poly(ethylene glycol) hydrogels for the delivery of therapeutic peptides (2014) Biomaterials, 35 (36), pp. 9719-9730
Van Hove, A.H., Antonienko, E., Burke, K., Brown, E., 3rd, Benoit, D.S., Temporally tunable, enzymatically responsive delivery of proangiogenic peptides from poly(ethylene glycol) hydrogels (2015) Adv Healthc Mater, 4 (13), pp. 2002-2011
Cutiongco, M.F., Choo, R.K., Shen, N.J., Chua, B.M., Sju, E., Choo, A.W., Le Visage, C., Yim, E.K., Composite scaffold of poly(vinyl alcohol) and interfacial polyelectrolyte complexation fibers for controlled biomolecule delivery (2015) Front Bioeng Biotechnol, 3, p. 3
Leslie-Barbick, J.E., Saik, J.E., Gould, D.J., Dickinson, M.E., West, J.L., The promotion of microvasculature formation in poly(ethylene glycol) diacrylate hydrogels by an immobilized VEGF-mimetic peptide (2011) Biomaterials, 32 (25), pp. 5782-5789
Young, D.A., Pimentel, M.B., Lima, L.D., Custodio, A.F., Lo, W.C., Chen, S.C., Teymour, F., Papavasiliou, G., Design and characterization of hydrogel nanoparticles with tunable network characteristics for sustained release of a VEGF-mimetic peptide (2017) Biomater Sci, 5 (10), pp. 2079-2092
Zhou, F., Jia, X.L., Yang, Y., Yang, Q.M., Gao, C., Zhao, Y.H., Fan, Y.B., Yuan, X.Y., Peptide-modified PELCL electrospun membranes for regulation of vascular endothelial cells (2016) Mat Sci Eng C-Mater, 68, pp. 623-631
Yang, Y., Yang, Q., Zhou, F., Zhao, Y., Jia, X., Yuan, X., Fan, Y., Electrospun PELCL membranes loaded with QK peptide for enhancement of vascular endothelial cell growth (2016) J. Mater. Sci. Mater. Med., 27 (6), p. 106
Lin, C.Y., Wang, Y.R., Lin, C.W., Wang, S.W., Chien, H.W., Cheng, N.C., Tsai, W.B., Yu, J., Peptide-modified zwitterionic porous hydrogels for endothelial cell and vascular engineering (2014) Biores Open Access, 3 (6), pp. 297-310
De Rosa, L., Diana, D., Basile, A., Russomanno, A., Isernia, C., Turco, M.C., Fattorusso, R., D'Andrea, L.D., Design, structural and biological characterization of a VEGF inhibitor beta-hairpin-constrained peptide (2014) Eur. J. Med. Chem., 73, pp. 210-216
Diana, D., Russomanno, A., De Rosa, L., Di Stasi, R., Capasso, D., Di Gaetano, S., Romanelli, A., Fattorusso, R., Functional binding surface of a beta-hairpin VEGF receptor targeting peptide determined by NMR spectroscopy in living cells (2015) Chem. Eur J., 21 (1), pp. 91-95
De Rosa, L., Russomanno, A., Romanelli, A., D'Andrea, L.D., Semi-synthesis of labeled proteins for spectroscopic applications (2013) Molecules, 18 (1), pp. 440-465
Diana, D., De Rosa, L., Palmieri, M., Russomanno, A., Russo, L., La Rosa, C., Milardi, D., Fattorusso, R., Long range Trp-Trp interaction initiates the folding pathway of a pro-angiogenic beta-hairpin peptide (2015) Sci. Rep., 5, p. 16651
De Rosa, L., Finetti, F., Diana, D., Di Stasi, R., Auriemma, S., Romanelli, A., Fattorusso, R., Miniaturizing, V.E.G.F., Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response (2016) Sci. Rep., 6, p. 31295
Bogdanovich S, Kim Y, Mizutani T, Yasuma R, Tudisco L, Cicatiello V, Bastos-carvalho A, Kerur N, Hirano Y, Baffi JZ, Tarallo V, Li S, Yasuma T, Arpitha P, Fowler BJ, Wright CB, Apicella I, Greco A, Brunetti A, Ruvo M, Sandomenico A, Nozaki M, Ijima R, Kaneko H, Ogura Y, Terasaki H, Ambati BK, Leusen JH, Langdon WY, Clark MR, Armour KL, Bruhns P, Verbeek JS, Gelfand BD, De Falco S, Ambati J * Human IgG1 antibodies suppress angiogenesis in a target-independent manner(557 views) Signal Transduct Target Ther (ISSN: 2059-3635print), 2016; 1: N/D-N/D. Impact Factor:0 ViewExport to BibTeXExport to EndNote
Santulli G, Cipolletta E, Sorriento D, Del Giudice C, Anastasio A, Monaco S, Maione AS, Condorelli G, Puca A, Trimarco B, Illario M, Iaccarino G * CaMK4 gene deletion induces hypertension(349 views) J Am Heart Assoc Journal Of The American Heart Association (ISSN: 2047-9980), 2012; 1(4): N/D-N/D. Impact Factor:2.882 ViewExport to BibTeXExport to EndNote
Ntziachristos V, Cuénod CA, Fournier L, Balvay D, Pradel C, Siauve N, Clement O, Jouannot E, Lucidarme O, Vecchio SD, Salvatore M, Law B, Tung C-H, Jain RK, Fukumura D, Munn LL, Brown EB, Schellenberger E, Montet X, Weissleder R, Clerck ND, Postnov A * Tumor Imaging(350 views) Textbook Of In Vivo Imaging In Vertebrates (ISSN: 9780-4700), 2007 Jul 16; 1: 277-309. Impact Factor:1.148 ViewExport to BibTeXExport to EndNote