TNBC Challenge: Oligonucleotide Aptamers for New Imaging and Therapy Modalities(338 views)(PDF public121 views) Camorani S, Fedele M, Zannetti A, Cerchia L
Pharmaceuticals (ISSN: 1424-8247print, 1424-8247linking), 2018 Nov 13; 11(4): N/D-N/D.
Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore (IEOS), CNR, 80145 Naples, Italy. s.camorani@ieos.cnr.it., Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore (IEOS), CNR, 80145 Naples, Italy. mfedele@unina.it., Istituto di Biostrutture e Bioimmagini, CNR, 80145 Naples, Italy. antonella.zannetti@cnr.it., Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore (IEOS), CNR, 80145 Naples, Italy. cerchia@unina.it.,
Istituto per l’Endocrinologia e l’Oncologia Sperimentale G. Salvatore (IEOS), CNR, Naples, 80145, Italy
References: Dent, R., Trudeau, M., Pritchard, K.I., Hanna, W.M., Kahn, H.K., Sawka, C.A., Lickley, L.A., Narod, S.A., Triple-negative breast cancer: Clinical features and patterns of recurrence (2007) Clin. Cancer Res., 13, pp. 4429-443
Bianchini, G., Balko, J.M., Mayer, I.A., Sanders, M.E., Gianni, L., Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease (2016) Nat. Rev. Clin Oncol., 13, pp. 674-690
Lehmann, B.D., Bauer, J.A., Chen, X., Sanders, M.E., Chakravarthy, A.B., Shyr, Y., Pietenpol, J.A., Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies (2011) J. Clin. Investig., 121, pp. 2750-2767
Lehmann, B.D., Jovanović, B., Chen, X., Estrada, M.V., Johnson, K.N., Shyr, Y., Moses, H.L., Pietenpol, J.A., Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for Neoadjuvant Chemotherapy Selection (2016) Plos ONE, 11
Martin, A.P., Downing, J., Cochrane, M., Collins, B., Francis, B., Haycox, A., Alfirevic, A., Pirmohamed, M., Trastuzumab uptake in HER2-positive breast cancer patients: A systematic review and meta-analysis of observational studies (2018) Crit. Rev. Oncol. Hematol., 130, pp. 92-107
Reinert, T., Barrios, C.H., Optimal management of hormone receptor positive metastatic breast cancer in 2016 (2015) Ther. Adv. Med. Oncol., 7, pp. 304-320
Abramson, V.G., Lehmann, B.D., Ballinger, T.J., Pietenpol, J.A., Subtyping of triple-negative breast cancer: Implications for therapy (2015) Cancer, 121, pp. 8-16
Rodriguez, A.A., Makris, A., Wu, M.F., Rimawi, M., Froehlich, A., Dave, B., Hilsenbeck, S.G., Dobrolecki, L.E., DNA repair signature is associated with anthracycline response in triple negative breast cancer patients (2010) Breast Cancer Res. Treat., 123, pp. 189-196
Prat, A., Parker, J.S., Karginova, O., Fan, C., Livasy, C., Herschkowitz, J.I., He, X., Perou, C.M., Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer (2010) Breast Cancer Res, 12. , R68. [CrossRef] [PubMed
Metzger-Filho, O., Tutt, A., de Azambuja, E., Saini, K.S., Viale, G., Loi, S., Bradbury, I., Ellis, P., Dissecting the heterogeneity of triple-negative breast cancer (2012) J. Clin. Oncol., 30, pp. 1879-1887
Desmedt, C., Haibe-Kains, B., Wirapati, P., Buyse, M., Larsimont, D., Bontempi, G., Delorenzi, M., Sotiriou, C., Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes (2008) Clin. Cancer Res., 14, pp. 5158-5165
Kreike, B., van Kouwenhove, M., Horlings, H., Weigelt, B., Peterse, H., Bartelink, H., van de Vijver, M.J., Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas (2007) Breast Cancer Res, 9. , R65. [CrossRef] [PubMed
Gucalp, A., Traina, T.A., Triple-negative breast cancer: Role of the androgen receptor (2010) Cancer J, 16, pp. 62-65
Dogan, B.E., Turnbull, L.W., Imaging of triple-negative breast cancer (2012) Ann. Oncol., 23, pp. vi23-vi29
Moon, W.K., Huang, Y.S., Lo, C.M., Huang, C.S., Bae, M.S., Kim, W.H., Chen, J.H., Chang, R.F., Computer-aided diagnosis for distinguishing between triple-negative breast cancer and fibroadenomas based on ultrasound texture features (2015) Med. Phys., 42, pp. 3024-3035
Lee, S.E., Han, K., Kwak, J.Y., Lee, E., Kim, E.K., Radiomics of US texture features in differential diagnosis between triple-negative breast cancer and fibroadenoma (2018) Sci. Rep., 8
Angelini, G., Marini, C., Iacconi, C., Mazzotta, D., Moretti, M., Picano, E., Morganti, R., Magnetic resonance (MR) features in triple negative breast cancer (TNBC) vs receptor positive cancer (nTNBC) (2018) Clin. Imaging, 49, pp. 12-16
Li, J., Han, X., Research and progress in magnetic resonance imaging of triple-negative breast cancer (2014) Magn. Reson. Imaging, 32, pp. 392-396
Eom, H.J., Cha, J.H., Choi, W.J., Chae, E.Y., Shin, H.J., Kim, H.H., Predictive Clinicopathologic and Dynamic Contrast-Enhanced MRI Findings for Tumor Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer (2017) AJR Am. J. Roentgenol., 208, pp. W225-W230
Groheux, D., Biard, L., Lehmann-Che, J., Teixeira, L., Bouhidel, F.A., Poirot, B., Bertheau, P., Resche-Rigon, M., Tumor metabolism assessed by FDG-PET/CT and tumor proliferation assessed by genomic grade index to predict response to neoadjuvant chemotherapy in triple negative breast cancer (2018) Eur. J. Nucl Med. Mol. Imaging, 45, pp. 1279-1288
Nguyen-Thu, H., Hanaoka, H., Nakajima, T., Yamaguchi, A., Nguyen-Cong, T., Kartamihardja, A.A.P., Tsushima, Y., Early prediction of triple negative breast cancer response to cisplatin treatment using diffusion-weighted MRI and 18F-FDG-PET (2018) Breast Cancer, 25, pp. 334-342
Park, J.H., Ahn, J.H., Kim, S.B., How shall we treat early triple-negative breast cancer (TNBC): From the current standard to upcoming immuno-molecular strategies (2018) ESMO Open, 3
Ellington, A.D., Szostak, J.W., In vitro selection of RNA molecules that bind specific ligands (1990) Nature, 346, pp. 818-822
Tuerk, C., Gold, L., Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase (1990) Science, 249, pp. 505-510
Robertson, D.L., Joyce, G.F., Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA (1990) Nature, 344, pp. 467-468
Zhou, J., Rossi, J., Aptamers as targeted therapeutics: Current potential and challenges (2017) Nat. Rev. Drug Discov., 16, p. 440
Cerchia, L., Aptamers: Promising Tools for Cancer Diagnosis and Therapy (2018) Cancers, 10, p. 132
Blind, M., Blank, M., Aptamer Selection Technology and Recent Advances (2015) Mol. Ther. Nucleic Acids, 4
Kinghorn, A.B., Fraser, L.A., Lang, S., Shiu, S.C.C., Tanner, J.A., Aptamer Bioinformatics (2017) Int. J. Mol. Sci., 18, p. 2516
Ruscito, A., McConnell, E.M., Koudrina, A., Velu, R., Mattice, C., Hunt, V., McKeague, M., Derosa, M.C., In Vitro Selection and Characterization of DNA Aptamers to a Small Molecule Target (2017) Curr. Protoc. Chem. Biol., 9, pp. 233-268
Urak, K.T., Shore, S., Rockey, W.M., Chen, S.J., McCaffrey, A.P., Giangrande, P.H., In vitro RNA SELEX for the generation of chemically-optimized therapeutic RNA drugs (2016) Methods, 103, pp. 167-174
Shangguan, D., Bing, T., Zhang, N., Cell-SELEX: Aptamer Selection Against Whole Cells (2015) Aptamers Selected by Cell-Selex for Theranostics, pp. 13-33. , Tan, W., Fang, X., Eds.
Cheng, C., Chen, Y.H., Lennox, K.A., Behlke, M.A., Davidson, B.L., In vivo SELEX for Identification of Brain-penetrating Aptamers (2013) Mol. Ther. Nucleic Acids, 2
Mi, J., Ray, P., Liu, J., Kuan, C.T., Xu, J., Hsu, D., Sullenger, B.A., Clary, B.M., In Vivo Selection Against Human Colorectal Cancer Xenografts Identifies an Aptamer That Targets RNA Helicase Protein DHX9 (2016) Mol. Ther. Nucleic Acids, 5
Liu, H., Mai, J., Shen, J., Wolfram, J., Li, Z., Zhang, G., Xu, R., Zu, Y., A Novel DNA Aptamer for Dual Targeting of Polymorphonuclear Myeloid-derived Suppressor Cells and Tumor Cells (2018) Theranostics, 8, pp. 31-44
Masuda, H., Baggerly, K.A., Wang, Y., Zhang, Y., Gonzalez-Angulo, A.M., Meric-Bernstam, F., Valero, V., Hortobagyi, G.N., Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes (2013) Clin. Cancer Res., 19, pp. 5533-5540
Mayer, G., Ahmed, M.S., Dolf, A., Endl, E., Knolle, P.A., Famulok, M., Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures (2010) Nat. Protoc., 5, pp. 1993-2004
Souza, A.G., Marangoni, K., Fujimura, P.T., Alves, P.T., Silva, M.J., Bastos, V.A., Goulart, L.R., Goulart, V.A., 3D Cell-SELEX: Development of RNA aptamers as molecular probes for PC-3 tumor cell line (2016) Exp. Cell Res., 341, pp. 147-156
Tang, Z., Shangguan, D., Wang, K., Shi, H., Sefah, K., Mallikratchy, P., Chen, H.W., Tan, W., Selection of aptamers for molecular recognition and characterization of cancer cells (2007) Anal. Chem., 79, pp. 4900-4907
Esposito, C.L., Passaro, D., Longobardo, I., Condorelli, G., Marotta, P., Affuso, A., de Franciscis, V., Cerchia, L., A neutralizing RNA aptamer against EGFR causes selective apoptotic cell death (2011) Plos ONE, 6
Camorani, S., Esposito, C.L., Rienzo, A., Catuogno, S., Iaboni, M., Condorelli, G., de Franciscis, V., Cerchia, L., Inhibition of receptor signaling and of glioblastoma-derived tumor growth by a novel PDGFRβ aptamer (2014) Mol. Ther., 22, pp. 828-841
Sefah, K., Tang, Z.W., Shangguan, D.H., Chen, H., Lopez-Colon, D., Li, Y., Parekh, P., Phillips, J.A., Molecular recognition of acute myeloid leukemia using aptamers (2009) Leukemia, 23, pp. 235-244
Chen, H.W., Medley, C.D., Sefah, K., Shangguan, D., Tang, Z., Meng, L., Smith, J.E., Tan, W., Molecular recognition of small-cell lung cancer cells using aptamers (2008) Chemmedchem, 3, pp. 991-1001
Shangguan, D., Li, Y., Tang, Z., Cao, Z.C., Chen, H.W., Mallikaratchy, P., Sefah, K., Tan, W., Aptamers evolved from live cells as effective molecular probes for cancer study (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 11838-11843
Li, X., Zhang, W., Liu, L., Zhu, Z., Ouyang, G., An, Y., Zhao, C., Yang, C.J., In vitro selection of DNA aptamers for metastatic breast cancer cell recognition and tissue imaging (2014) Anal. Chem., 86, pp. 6596-6603
Li, W.M., Zhou, L.L., Zheng, M., Fang, J., Selection of Metastatic Breast Cancer Cell-Specific Aptamers for the Capture of CTCs with a Metastatic Phenotype by Cell-SELEX (2018) Mol. Ther. Nucleic Acids, 12, pp. 707-717
Sefah, K., Yang, Z., Bradley, K.M., Hoshika, S., Jiménez, E., Zhang, L., Zhu, G., Turek, D., In vitro selection with artificial expanded genetic information systems (2014) Proc. Natl. Acad. Sci. USA., 111, pp. 1449-1454
Yan, A., Levy, M., Cell internalization SELEX: In vitro selection for molecules that internalize into cells (2014) Methods Mol. Biol., 1103, pp. 241-265
Thiel, W.H., Thiel, K.W., Flenker, K.S., Bair, T., Dupuy, A.J., McNamara, J.O., II, Miller, F.J., Giangrande, P.H., Cell-internalization SELEX: Method for identifying cell-internalizing RNA aptamers for delivering siRNAs to target cells (2015) Methods Mol. Biol., 1218, pp. 187-199
Porciani, D., Cardwell, L.N., Tawiah, K.D., Alam, K.K., Lange, M.J., Daniels, M.A., Burke, D.H., Modular cell-internalizing aptamer nanostructure enables targeted delivery of large functional RNAs in cancer cell lines (2018) Nat. Commun., 9, p. 2283
Powell Gray, B., Kelly, L., Ahrens, D.P., Barry, A.P., Kratschmer, C., Levy, M., Sullenger, B.A., Tunable cytotoxic aptamer-drug conjugates for the treatment of prostate cancer (2018) Proc. Natl. Acad. Sci. USA, 115, pp. 4761-4766
Chu, T.C., Marks, J.W., III, Lavery, L.A., Faulkner, S., Rosenblum, M.G., Ellington, A.D., Levy, M., Aptamer:Toxin conjugates that specifically target prostate tumor cells (2006) Cancer Res, 66, pp. 5989-5992
Lemmon, M.A., Schlessinger, J., Cell signaling by receptor tyrosine kinases (2010) Cell, 141, pp. 1117-1134
Nair, A., Chung, H.C., Sun, T., Tyagi, S., Dobrolecki, L.E., Dominguez-Vidana, R., Kurley, S.J., Henke, D.M., Combinatorial inhibition of PTPN12-regulated receptors leads to a broadly effective therapeutic strategy in triple-negative breast cancer (2018) Nat. Med., 24, pp. 505-511
Camorani, S., Crescenzi, E., Fedele, M., Cerchia, L., Oligonucleotide aptamers against tyrosine kinase receptors: Prospect for anticancer applications (2018) Biochim. Biophys. Acta Rev. Cancer, 1869, pp. 263-277
Shu, D., Li, H., Shu, Y., Xiong, G., Carson, W.E., III, Haque, F., Xu, R., Guo, P., Systemic Delivery of Anti-miRNA for Suppression of Triple Negative Breast Cancer Utilizing RNA Nanotechnology (2015) ACS Nano, 9, pp. 9731-9740
Camorani, S., Hill, B.S., Collina, F., Gargiulo, S., Napolitano, M., Cantile, M., Di Bonito, M., Zannetti, A., Targeted imaging and inhibition of triple-negative breast cancer metastases by a PDGFRβ aptamer (2018) Theranostics, 8, pp. 5178-5199
Park, H.S., Jang, M.H., Kim, E.J., Kim, H.J., Lee, H.J., Kim, Y.J., Kim, J.H., Kim, I.A., High EGFR gene copy number predicts poor outcome in triple-negative breast cancer (2014) Mod. Pathol., 27, pp. 1212-1222
Kim, Y., Kim, E., Wu, Q., Guryanova, O., Hitomi, M., Lathia, J.D., Serwanski, D., Lee, J., Platelet-derived growth factor receptors differentially inform intertumoral and intratumoral heterogeneity (2012) Genes Dev, 26, pp. 1247-1262
Monaco, I., Camorani, S., Colecchia, D., Locatelli, E., Calandro, P., Oudin, A., Niclou, S., Cerchia, L., Aptamer Functionalization of Nanosystems for Glioblastoma Targeting through the Blood-Brain Barrier (2017) J. Med. Chem, 60, pp. 4510-4516
Kufe, D.W., Mucins in cancer: Function, prognosis and therapy (2009) Nat. Rev. Cancer, 9, pp. 874-885
Goode, G., Gunda, V., Chaika, N.V., Purohit, V., Yu, F., Singh, P.K., MUC1 facilitates metabolomic reprogramming in triple-negative breast cancer (2017) Plos ONE, 12
Burstein, M.D., Tsimelzon, A., Poage, G.M., Covington, K.R., Contreras, A., Fuqua, S.A., Savage, M.I., Chang, J.C., Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer (2015) Clin. Cancer Res., 21, pp. 1688-1698
Ferreira, C.S.M., Matthews, C.S., Missailidis, S., DNA aptamers that bind to MUC1 tumour marker: Design and characterization of MUC1-binding single-stranded DNA aptamers (2006) Tumour Biol, 27, pp. 289-301
Borbas, K.E., Ferreira, C.S., Perkins, A., Bruce, J.I., Missailidis, S., Design and synthesis of mono-and multimeric targeted radiopharmaceuticals based on novel cyclen ligands coupled to anti-MUC1 aptamers for the diagnostic imaging and targeted radiotherapy of cancer (2007) Bioconjug. Chem., 18, pp. 1205-1212
Pieve, C.D., Perkins, A.C., Missailidis, S., Anti-Muc1 aptamers: Radiolabelling with (99m)Tc and biodistribution in Mcf-7 tumour-bearing mice (2009) Nucl. Med. Biol., 36, pp. 703-710
da Pieve, C., Blackshaw, E., Missailidis, S., Perkins, A.C., PEGylation and biodistribution of an anti-MUC1 aptamer in MCF-7 tumor-bearing mice (2012) Bioconjug. Chem., 23, pp. 1377-1381
Santos Do Carmo, F., Ricci-Junior, E., Cerqueira-Coutinho, C., Albernaz, M.S., Bernardes, E.S., Missailidis, S., Santos-Oliveira, R., Anti-MUC1 nano-aptamers for triple-negative breast cancer imaging by single-photon emission computed tomography in inducted animals: Initial considerations (2016) Int. J. Nanomed., 12, pp. 53-60
Pascual, L., Cerqueira-Coutinho, C., García-Fernández, A., de Luis, B., Bernardes, E.S., Albernaz, M.S., Missailidis, S., Orzaez, M., MUC1 aptamer-capped mesoporous silica nanoparticles for controlled drug delivery and radio-imaging applications (2017) Nanomedicine, 13, pp. 2495-2505
Ferreira, C.S.M., Papamichael, K., Guilbault, G., Schwarzacher, T., Gariepy, J., Missailidis, S., DNA aptamers against the MUC1 tumour marker: Design of aptamer–antibody sandwich ELISA for the early diagnosis of epithelial tumours (2008) Anal. Bioanal. Chem., 390, pp. 1039-1050
Luo, S., Wang, S., Luo, N., Chen, F., Hu, C., Zhang, K., The application of aptamer 5TR1 in triple negative breast cancer target therapy (2018) J. Cell. Biochem., 119, pp. 896-908
Bahreyni, A., Yazdian-Robati, R., Hashemitabar, S., Ramezani, M., Ramezani, P., Abnous, K., Taghdisi, S.M., A new chemotherapy agent-free theranostic system composed of graphene oxide nano-complex and aptamers for treatment of cancer cells (2017) Int. J. Pharm., 526, pp. 391-399
Gregório, A.C., Lacerda, M., Figueiredo, P., Simões, S., Dias, S., Moreira, J.N., Meeting the needs of breast cancer: A nucleolin’s perspective (2018) Crit. Rev. Oncol. Hematol., 125, pp. 89-101
Bates, P.J., Kahlon, J.B., Thomas, S.D., Trent, J.O., Miller, D.M., Antiproliferative activity of G-rich oligonucleotides correlates with protein binding (1999) J. Biol Chem., 274, pp. 26369-26377
Soundararajan, S., Chen, W., Spicer, E.K., Courtenay-Luck, N., Fernandes, D.J., The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells (2008) Cancer Res, 68, pp. 2358-2365
Pichiorri, F., Palmieri, D., de Luca, L., Consiglio, J., You, J., Rocci, A., Talabere, T., Cascione, L., In vivo NCL targeting affects breast cancer aggressiveness through miRNA regulation (2013) J. Exp. Med., 210, pp. 951-968
Reyes-Reyes, E.M., Šalipur, F.R., Shams, M., Forsthoefel, M.K., Bates, P.J., Mechanistic studies of anticancer aptamer AS1411 reveal a novel role for nucleolin in regulating Rac1 activation (2015) Mol. Oncol., 9, pp. 1392-1405
Dam, D.H., Culver, K.S., Odom, T.W., Grafting aptamers onto gold nanostars increases in vitro efficacy in a wide range of cancer cell types (2014) Mol. Pharm., 11, pp. 580-587
Malik, M.T., O’Toole, M.G., Casson, L.K., Thomas, S.D., Bardi, G.T., Reyes-Reyes, E.M., Ng, C.K., Bates, P.J., AS1411-conjugated gold nanospheres and their potential for breast cancer therapy (2015) Oncotarget, 6, pp. 22270-22281
Zhou, W., Zhou, Y., Wu, J., Liu, Z., Zhao, H., Liu, J., Ding, J., Aptamer-nanoparticle bioconjugates enhance intracellular delivery of vinorelbine to breast cancer cells (2014) J. Drug Target., 22, pp. 57-66
Tung, J., Tew, L.S., Hsu, Y.M., Khung, Y.L., A novel 4-arm DNA/RNA Nanoconstruct triggering Rapid Apoptosis of Triple Negative Breast Cancer Cells within 24 h (2017) Sci. Rep, 7, p. 793
Wang, Y., Chen, X., Tian, B., Liu, J., Yang, L., Zeng, L., Chen, T., Wang, X., Nucleolin-targeted Extracellular Vesicles as a Versatile Platform for Biologics Delivery to Breast Cancer (2017) Theranostics, 7, pp. 1360-1372
Creighton, C.J., Li, X., Landis, M., Dixon, J.M., Neumeister, V.M., Sjolund, A., Rimm, D.L., Herschkowitz, J.I., Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 13820-13825
Ma, F., Li, H., Wang, H., Shi, X., Fan, Y., Ding, X., Lin, C., Xu, B., Enriched CD44(+)/CD24(−) population drives the aggressive phenotypes presented in triple-negative breast cancer (TNBC) (2014) Cancer Lett, 353, pp. 153-159
Li, X., Lewis, M.T., Huang, J., Gutierrez, C., Osborne, C.K., Wu, M.F., Hilsenbeck, S.G., Chamness, G.C., Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy (2008) J. Natl. Cancer Inst., 100, pp. 672-679
Vinogradov, S., Wei, X., Cancer stem cells and drug resistance: The potential of nanomedicine (2012) Nanomedicine, 7, pp. 597-615
Bhola, N.E., Balko, J.M., Dugger, T.C., Kuba, M.G., Sánchez, V., Sanders, M., Stanford, J., Arteaga, C.L., TGF-β inhibition enhances chemotherapy action against triple-negative breast cancer (2013) J. Clin. Investig., 123, pp. 1348-1358
Logue, S.E., McGrath, E.P., Cleary, P., Greene, S., Mnich, K., Almanza, A., Chevet, E., Legembre, P., Inhibition of IRE1 RNase activity modulates the tumor cell secretome and enhances response to chemotherapy (2018) Nat. Commun., 9, p. 3267
Samanta, D., Gilkes, D.M., Chaturvedi, P., Xiang, L., Semenza, G.L., Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells (2014) Proc. Natl. Acad. Sci. USA, 111, pp. E5429-E5438
Collina, F., Di Bonito, M., Li Bergolis, V., de Laurentiis, M., Vitagliano, C., Cerrone, M., Nuzzo, F., Botti, G., Prognostic Value of Cancer Stem Cells Markers in Triple-Negative Breast Cancer (2015) Biomed. Res. Int., 2015, p. 158682
Annett, S., Robson, T., Targeting cancer stem cells in the clinic: Current status and perspectives (2018) Pharmacol. Ther., 187, pp. 13-30
Kim, Y., Wu, Q., Hamerlik, P., Hitomi, M., Sloan, A.E., Barnett, G.H., Weil, R.J., Rich, J.N., Aptamer identification of brain tumor-initiating cells (2013) Cancer Res, 73, pp. 4923-4936
Sefah, K., Bae, K.M., Phillips, J.A., Siemann, D.W., Su, Z., McClellan, S., Vieweg, J., Tan, W., Cell-based selection provides novel molecular probes for cancer stem cells (2013) Int. J. Cancer, 132, pp. 2578-2588
Zhou, G., Latchoumanin, O., Bagdesar, M., Hebbard, L., Duan, W., Liddle, C., George, J., Qiao, L., Aptamer-Based Therapeutic Approaches to Target Cancer Stem Cells (2017) Theranostics, 7, pp. 3948-3961
Ababneh, N., Alshaer, W., Allozi, O., Mahafzah, A., El-Khateeb, M., Hillaireau, H., Noiray, M., Ismail, S., In vitro selection of modified RNA aptamers against CD44 cancer stem cell marker (2013) Nucleic Acid Ther, 23, pp. 401-407
Alshaer, W., Hillaireau, H., Vergnaud, J., Ismail, S., Fattal, E., Functionalizing Liposomes with anti-CD44 Aptamer for Selective Targeting of Cancer Cells (2015) Bioconjug. Chem., 26, pp. 1307-1313
Clevers, H., The cancer stem cell: Premises, promises and challenges (2011) Nat. Med., 17, pp. 313-319
Shigdar, S., Lin, J., Yu, Y., Pastuovic, M., Wei, M., Duan, W., RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule (2011) Cancer Sci, 102, pp. 991-998
Shigdar, S., Qian, C., Lv, L., Pu, C., Li, Y., Li, L., Marappan, M., Duan, W., The use of sensitive chemical antibodies for diagnosis: Detection of low levels of EpCAM in breast cancer (2013) Plos ONE, 8
Macdonald, J., Henri, J., Roy, K., Hays, E., Bauer, M., Veedu, R.N., Pouliot, N., Shigdar, S., EpCAM Immunotherapy versus Specific Targeted Delivery of Drugs (2018) Cancers, 10, p. 19
Xiang, D., Zheng, C., Zhou, S.F., Qiao, S., Tran, P.H., Pu, C., Li, Y., Lin, J., Superior Performance of Aptamer in Tumor Penetration over Antibody: Implication of Aptamer-Based Theranostics in Solid Tumors (2015) Theranostics, 5, pp. 1083-1097
Gilboa-Geffen, A., Hamar, P., Le, M.T., Wheeler, L.A., Trifonova, R., Petrocca, F., Wittrup, A., Lieberman, J., Gene Knockdown by EpCAM Aptamer-siRNA Chimeras Suppresses Epithelial Breast Cancers and Their Tumor-Initiating Cells (2015) Mol. Cancer Ther., 14, pp. 2279-2291
Junttila, M.R., de Sauvage, F.J., Influence of tumour micro-environment heterogeneity on therapeutic response (2013) Nature, 501, pp. 346-354
Hill, B.S., Pelagalli, A., Passaro, N., Zannetti, A., Tumor-educated mesenchymal stem cells promote pro-metastatic phenotype (2017) Oncotarget, 8, pp. 73296-73311
Veevers-Lowe, J., Ball, S.G., Shuttleworth, A., Kielty, C.M., Mesenchymal stem cell migration is regulated by fibronectin through α5β1-integrin-mediated activation of PDGFR-β and potentiation of growth factor signals (2011) J. Cell Sci., 124, pp. 1288-1300
Zhao, W., Schafer, S., Choi, J., Yamanaka, Y.J., Lombardi, M.L., Bose, S., Carlson, A.L., Droujinine, I.A., Cell-surface sensors for real-time probing of cellular environments (2011) Nat. Nanotechnol., 6, pp. 524-531
Mann, A.P., Somasunderam, A., Nieves-Alicea, R., Li, X., Hu, A., Sood, A.K., Ferrari, M., Tanaka, T., Identification of thioaptamer ligand against E-selectin: Potential application for inflamed vasculature targeting (2010) Plos ONE, 5
Kang, S.A., Hasan, N., Mann, A.P., Zheng, W., Zhao, L., Morris, L., Zhu, W., Dooley, W.C., Blocking the adhesion cascade at the premetastatic niche for prevention of breast cancer metastasis (2015) Mol. Ther., 23, pp. 1044-1054
Morita, Y., Kamal, M., Kang, S.A., Zhang, R., Lokesh, G.L., Thiviyanathan, V., Hasan, N., Leslie, M., E-selectin Targeting PEGylated-thioaptamer Prevents Breast Cancer Metastases (2016) Mol. Ther. Nucleic Acids, 5
Mann, A.P., Bhavane, R.C., Somasunderam, A., Liz Montalvo-Ortiz, B., Ghaghada, K.B., Volk, D., Nieves-Alicea, R., Annapragada, A., Thioaptamer conjugated liposomes for tumor vasculature targeting (2011) Oncotarget, 2, pp. 298-304
Mann, A.P., Tanaka, T., Somasunderam, A., Liu, X., Gorenstein, D.G., Ferrari, M., E-selectin-targeted porous silicon particle for nanoparticle delivery to the bone marrow (2011) Adv. Mater., 23, pp. H278-H282
Mai, J., Huang, Y., Mu, C., Zhang, G., Xu, R., Guo, X., Xia, X., Thiviyanathan, V., Bone marrow endothelium-targeted therapeutics for metastatic breast cancer (2014) J. Control Release, 187, pp. 22-29
Kwa, M.J., Adams, S., Checkpoint inhibitors in triple-negative breast cancer (TNBC): Where to go from here (2018) Cancer, 124, pp. 2086-2103
Prodeus, A., Abdul-Wahid, A., Fischer, N.W., Huang, E.H., Cydzik, M., Gariépy, J., Targeting the PD-1/PD-L1 Immune Evasion Axis with DNA Aptamers as a Novel Therapeutic Strategy for the Treatment of Disseminated Cancers (2015) Mol. Ther. Nucleic Acids, 4
Lai, W.Y., Huang, B.T., Wang, J.W., Lin, P.Y., Yang, P.C., A Novel PD-L1-targeting Antagonistic DNA Aptamer with Antitumor Effects (2016) Mol. Ther. Nucleic Acids, 5
Zhao, H., Chen, Q., Alam, A., Cui, J., Suen, K.C., Soo, A.P., Eguchi, S., Ma, D., The role of osteopontin in the progression of solid organ tumour (2018) Cell Death Dis, 9, p. 356
Mi, Z., Guo, H., Russell, M.B., Liu, Y., Sullenger, B.A., Kuo, P.C., RNA aptamer blockade of osteopontin inhibits growth and metastasis of MDA-MB231 breast cancer cells (2009) Mol. Ther., 17, pp. 153-161
Talbot, L.J., Mi, Z., Bhattacharya, S.D., Kim, V., Guo, H., Kuo, P.C., Pharmacokinetic characterization of an RNA aptamer against osteopontin and demonstration of in vivo efficacy in reversing growth of human breast cancer cells (2011) Surgery, 150, pp. 224-230
Mi, Z., Guo, H., Kuo, P.C., Identification of osteopontin-dependent signaling pathways in a mouse model of human breast cancer (2009) BMC Res. Notes, 2, p. 119
Weber, C.E., Kothari, A.N., Wai, P.Y., Li, N.Y., Driver, J., Zapf, M.A., Franzen, C.A., Zlobin, A., Osteopontin mediates an MZF1-TGF-β1-dependent transformation of mesenchymal stem cells into cancer-associated fibroblasts in breast cancer (2015) Oncogene, 34, pp. 4821-4833
Kuo, M.C., Kothari, A.N., Kuo, P.C., Mi, Z., Cancer stemness in bone marrow micrometastases of human breast cancer (2018) Surgery, 163, pp. 330-335
Stuart, C.H., Riley, K.R., Boyacioglu, O., Herpai, D.M., Debinski, W., Qasem, S., Marini, F.C., Gmeiner, W.H., Selection of a Novel Aptamer Against Vitronectin Using Capillary Electrophoresis and Next Generation Sequencing (2016) Mol. Ther. Nucleic Acids, 5
Blake, C.M., Sullenger, B.A., Lawrence, D.A., Fortenberry, Y.M., Antimetastatic potential of PAI-1-specific RNA aptamers (2009) Oligonucleotides, 19, pp. 117-128
Fortenberry, Y.M., Brandal, S.M., Carpentier, G., Hemani, M., Pathak, A.P., Intracellular Expression of PAI-1 Specific Aptamers Alters Breast Cancer Cell Migration, Invasion and Angiogenesis (2016) Plos ONE, 11
TNBC Challenge: Oligonucleotide Aptamers for New Imaging and Therapy Modalities
Grünewald TG, Alonso M, Avnet S, Banito A, Burdach S, Cidre-aranaz F, Di Pompo G, Distel M, Dorado-garcia H, Garcia-castro J, González-gonzález L, Grigoriadis AE, Kasan M, Koelsche C, Krumbholz M, Lecanda F, Lemma S, Longo DL, Madrigal-esquivel C, Morales-molina Á, Musa J, Ohmura S, Ory B, Pereira-silva M, Perut F, Rodriguez R, Seeling C, Al Shaaili N, Shaabani S, Shiavone K, Sinha S, Tomazou EM, Trautmann M, Vela M, Versleijen-jonkers YM, Visgauss J, Zalacain M, Schober SJ, Lissat A, English WR, Baldini N, Heymann D * Sarcoma treatment in the era of molecular medicine(53 views) Embo Mol Med (ISSN: 1757-4676linking), 2020 Oct 13; 12(11): e11131-N/D. Impact Factor:10.293 ViewExport to BibTeXExport to EndNote