Angiogenin-mimetic peptide functionalised gold nanoparticles for cancer therapy applications(166 views) Satriano C, Munzone A, Cucci LM, Giacomelli C, Trincavelli ML, Martini C, Rizzarelli E, La Mendola D
Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania, 95125, Italy
Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, Pisa, 56126, Italy
Institute of Biostructure and Bioimaging (IBB) of the Italian National Research Council (CNR), Via Paolo Gaifami 18, Catania, Italy
References: Di Pietro, P., Strano, G., Zuccarello, L., Satriano, C., Gold and silver nanoparticles for applications in theranostics (2016) Curr. Top. Med. Chem., 16 (27), pp. 3069-310
Parnsamut, C., Brimson, S., Effects of silver nanoparticles and gold nanoparticles on IL-2, IL-6, and TNF-alpha production via MAPK pathway in leukemic cell lines (2015) Genet. Mol. Res., 14, pp. 3650-3668
Zhang, P., Hu, C., Ran, W., Meng, J., Yin, Q., Li, Y., Recent progress in light-triggered nanotheranostics for cancer treatment (2016) Theranostics, 6, pp. 948-968
Hornos Carneiro, M.F., Barbosa, F., Jr., Gold nanoparticles: a critical review of therapeutic applications and toxicological aspects (2016) J. Toxicol. Environ. Health B Crit. Rev., 19, pp. 129-148
Pan, Y., Wu, Q., Qin, L., Cai, J., Du, B., Gold nanoparticles inhibit VEGF165-induced migration and tube formation of endothelial cells via the Akt pathway (2014) Biomed. Res. Int., 2014, p. 418624
Vallee, B.L., Riordan, J.F., Organogenesis and angiogenin (1997) Cell. Mol. Life Sci., 53, pp. 803-815
Shapiro, R., Strydom, D.J., Olson, K.A., Vallee, B.L., Isolation of angiogenin from normal human plasma (1987) Biochemistry, 26, pp. 5141-5146
Chung, S., Dwabe, S., Elshimali, Y., Sukhija, H., Aroh, C., Vadgama, J.V., Identification of novel biomarkers for metastatic colorectal cancer using angiogenesis-antibody array and intracellular signaling array (2015) PLoS One, 10
La Mendola, D., Giacomelli, C., Rizzarelli, E., Intracellular bioinorganic chemistry and cross talk among different-omics (2016) Curr. Top. Med. Chem., 16 (27), pp. 3103-3130
Nilsson, U.W., Abrahamsson, A., Dabrosin, C., Angiogenin regulation by estradiol in breast tissue: tamoxifen inhibits angiogenin nuclear translocation and antiangiogenin therapy reduces breast cancer growth in vivo (2010) Clin. Cancer Res., 16, pp. 3659-3669
Soncin, F., Guitton, J.D., Cartwright, T., Badet, J., Interaction of human angiogenin with copper modulates angiogenin binding to endothelial cells (1997) Biochem. Biophys. Res. Commun., 236, pp. 604-610
Bartczak, D., Muskens, O.L., Sanchez-Elsner, T., Kanaras, A.G., Millar, T.M., Manipulation of in vitro angiogenesis using peptide-coated gold nanoparticles (2013) ACS Nano, 7, pp. 5628-5636
Roma-Rodrigues, C., Heuer-Jungemann, A., Fernandes, A.R., Kanaras, A.G., Baptista, P.V., Peptide-coated gold nanoparticles for modulation of angiogenesis in vivo (2016) Int. J. Nanomedicine, 11, pp. 2633-2639
Hruby, V.J., Design of cyclic peptides with biological activities from biologically active peptides: the case of peptide modulators of melanocortin receptors (2016) Biopolymers
La Mendola, D., Magri, A., Campagna, T., Campitiello, M.A., Raiola, L., Isernia, C., Hansson, O., Rizzarelli, E., A doppel alpha-helix peptide fragment mimics the copper(II) interactions with the whole protein (2010) Chemistry, 16, pp. 6212-6223
Forte, G., Travaglia, A., Magri, A., Satriano, C., La Mendola, D., Adsorption of NGF and BDNF derived peptides on gold surfaces (2014) Phys. Chem. Chem. Phys., 16, pp. 1536-1544
Skaper, S.D., Peptide mimetics of neurotrophins and their receptors (2011) Curr. Pharm. Des., 17, pp. 2704-2718
Gho, Y.S., Chae, C.B., Anti-angiogenin activity of the peptides complementary to the receptor-binding site of angiogenin (1997) J. Biol. Chem., 272, pp. 24294-24299
Hatzi, E., Badet, J., Expression of receptors for human angiogenin in vascular smooth muscle cells (1999) Eur. J. Biochem., 260, pp. 825-832
Hu, G.F., Chang, S.I., Riordan, J.F., Vallee, B.L., An angiogenin-binding protein from endothelial cells (1991) Proc. Natl. Acad. Sci. U. S. A., 88, pp. 2227-2231
Hallahan, T.W., Shapiro, R., Vallee, B.L., Dual site model for the organogenic activity of angiogenin (1991) Proc. Natl. Acad. Sci. U. S. A., 88, pp. 2222-2226
Giacomelli, C., Trincavelli, M.L., Satriano, C., Hansson, O., La Mendola, D., Rizzarelli, E., Martini, C., Copper (II) ions modulate angiogenin activity in human endothelial cells (2015) Int. J. Biochem. Cell Biol., 60, pp. 185-196
La Mendola, D., Arnesano, F., Hansson, O., Giacomelli, C., Calo, V., Mangini, V., Magri, A., Rizzarelli, E., Copper binding to naturally occurring, lactam form of angiogenin differs from that to recombinant protein, affecting their activity (2016) Metallomics, 8, pp. 118-124
Crabtree, B., Holloway, D.E., Baker, M.D., Acharya, K.R., Subramanian, V., Biological and structural features of murine angiogenin-4, an angiogenic protein (2007) Biochemistry, 46, pp. 2431-2443
Hu, G.F., Riordan, J.F., Vallee, B.L., A putative angiogenin receptor in angiogenin-responsive human endothelial cells (1997) Proc. Natl. Acad. Sci. U. S. A., 94, pp. 2204-2209
Hu, G.F., Strydom, D.J., Fett, J.W., Riordan, J.F., Vallee, B.L., Actin is a binding protein for angiogenin (1993) Proc. Natl. Acad. Sci. U. S. A., 90, pp. 1217-1221
Hu, G., Riordan, J.F., Vallee, B.L., Angiogenin promotes invasiveness of cultured endothelial cells by stimulation of cell-associated proteolytic activities (1994) Proc. Natl. Acad. Sci. U. S. A., 91, pp. 12096-12100
Pyatibratov, M.G., Tolkatchev, D., Plamondon, J., Xu, P., Ni, F., Kostyukova, A.S., Binding of human angiogenin inhibits actin polymerization (2010) Arch. Biochem. Biophys., 495, pp. 74-81
Magri, A., Munzone, A., Peana, M., Medici, S., Zoroddu, M.A., Hansson, O., Satriano, C., La Mendola, D., Coordination environment of Cu(II) ions bound to N-terminal peptide fragments of angiogenin protein (2016) Int. J. Mol. Sci., 17
Gauci, S., van Breukelen, B., Lemeer, S.M., Krijgsveld, J., Heck, A.J., A versatile peptide pI calculator for phosphorylated and N-terminal acetylated peptides experimentally tested using peptide isoelectric focusing (2008) Proteomics, 8, pp. 4898-4906
Turkevich, J., Stevenson, P.C., Hillier, J., A study of the nucleation and growth processes in the synthesis of colloidal gold (1951) Discuss. Faraday Soc., 11, pp. 55-75
Liu, X., Atwater, M., Wang, J., Huo, Q., Extinction coefficient of gold nanoparticles with different sizes and different capping ligands (2007) Colloids Surf. B: Biointerfaces, 58, pp. 3-7
Piella, J., Bastús, N.G., Puntes, V., Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties (2016) Chem. Mater., 28, pp. 1066-1075
Harpaz, Y., Gerstein, M., Chothia, C., Volume changes on protein folding (1994) Structure, 2, pp. 641-649
Hackley, V.A., Clogston, J.D., Measuring the hydrodynamic size of nanoparticles in aqueous media using batch-mode dynamic light scattering (2011) Methods Mol. Biol., 697, pp. 35-52
Tomaszewska, E., Soliwoda, K., Kadziola, K., Tkacz-Szczesna, B., Celichowski, G., Cichomski, M., Szmaja, W., Grobelny, J., Detection limits of DLS and UV–Vis spectroscopy in characterization of polydisperse nanoparticles colloids (2013) J. Nanomater., 2013, pp. 313081-313090
Angiogenin-mimetic peptide functionalised gold nanoparticles for cancer therapy applications