Shedding light on surface exposition of poly(ethylene glycol) and folate targeting units on nanoparticles of poly(ε-caprolactone) diblock copolymers: Beyond a paradigm
Shedding light on surface exposition of poly(ethylene glycol) and folate targeting units on nanoparticles of poly(ε-caprolactone) diblock copolymers: Beyond a paradigm(550 views) Venuta A, Moret F, Dal Poggetto G, Esposito D, Fraix A, Avitabile C, Ungaro F, Malinconico M, Sortino S, Romanelli A, Laurienzo P, Reddi E, Quaglia F
Keywords: Biodegradable Nanoparticles, Poly(ethylene Glycol), Cell Uptake, Folate, Protein Interaction, Copolymer, Folate Receptor, Folic Acid, Macrogol, Polycaprolactone, Drug Carrier, Macrogol Derivative, Poly(ethylene Glycol)-Folate, Polyester, Cancer Cell, Cell Interaction, Chemical Analysis, Chemical Structure, Controlled Study, Endocytosis, Human, Human Cell, Internalization, Macrophage, Molecular Weight, Phagocyte, Photon Correlation Spectroscopy, Polymerization, Priority Journal, Protein Expression, Proton Nuclear Magnetic Resonance, Signal Transduction, Surface Property, Synthesis, Analogs And Derivatives, Chemistry, Physiology, Molecular Structure, Polyethylene Glycols, Surface Properties, Folic Acid Analogs, Derivatives Chemistry
, Macrophages Chemistry Physiology
, Nanoparticles Chemistry
, Polyesters Chemistry
, Polyethylene Glycols Chemistry
, Polymers Chemistry,
Affiliations: *** IBB - CNR ***
Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, Napoli, 80131, Italy
Department of Biology, University of Padova, Via Ugo Bassi 58/B, Padova, 35121, Italy
Institute for Polymers, Composites and Biomaterials, CNR, Via Campi Flegrei 34, Pozzuoli, Napoli 80078, Italy
Laboratory of Photochemistry, Department of Drug Science, Viale Andrea Doria 6, Catania, 95125, Italy
Institute of Biostructure and Bioimaging, CNR, via Mezzocannone 16, Napoli, 80134, Italy
References: Auguste, D.T., Armes, S.P., Brzezinska, K.R., Deming, T.J., Kohn, J., Prud'homme, R.K., pH triggered release of protective poly(ethylene glycol)-b-polycation copolymers from liposomes (2006) Biomaterials, 27, pp. 2599-260
Bertrand, N., Leroux, J.C., The journey of a drug-carrier in the body: an anatomo-physiological perspective (2012) J. Control. Release, 161, pp. 152-163
Cammas, S., Nagasaki, Y., Kataoka, K., Heterobifunctional poly(ethylene oxide): synthesis of alpha-methoxy-omega-amino and alpha-hydroxy-omega-amino PEOs with the same molecular weights (1995) Bioconjug. Chem., 6, pp. 226-230
Cao, B., Zheng, Y., Xi, T., Zhang, C., Song, W., Burugapalli, K., Yang, H., Ma, Y., Concentration-dependent cytotoxicity of copper ions on mouse fibroblasts in vitro: effects of copper ion release from TCu380A vs TCu220C intra-uterine devices (2012) Biomed. Microdevices, 14, pp. 709-720
Chen, C., Ke, J., Zhou, X.E., Yi, W., Brunzelle, J.S., Li, J., Yong, E.-L., Melcher, K., Structural basis for molecular recognition of folic acid by folate receptors (2013) Nature, 500, pp. 486-489
Cheung, A., Bax, H.J., Josephs, D.H., Ilieva, K.M., Pellizzari, G., Opzoomer, J., Bloomfield, J., Karagiannis, S.N., Targeting folate receptor alpha for cancer treatment (2016) Oncotarget
Conte, C., Fotticchia, I., Tirino, P., Moret, F., Pagano, B., Gref, R., Ungaro, F., Quaglia, F., Cyclodextrin-assisted assembly of PEGylated polyester nanoparticles decorated with folate (2016) Colloids Surf. B: Biointerfaces, 141, pp. 148-157
El-Gogary, R.I., Rubio, N., Wang, J.T.-W., Al-Jamal, W.T., Bourgognon, M., Kafa, H., Naeem, M., Al-Jamal, K.T., Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo (2014) ACS Nano, 8, pp. 1384-1401
Endres, T.K., Beck-Broichsitter, M., Samsonova, O., Renette, T., Kissel, T.H., Self-assembled biodegradable amphiphilic PEG–PCL–lPEI triblock copolymers at the borderline between micelles and nanoparticles designed for drug and gene delivery (2011) Biomaterials, 32, pp. 7721-7731
Gao, H., Yang, Z., Zhang, S., Pang, Z., Jiang, X., Internalization and subcellular fate of aptamer and peptide dual-functioned nanoparticles (2014) J. Drug Target., 22, pp. 450-459
Grossen, P., Witzigmann, D., Sieber, S., Huwyler, J., PEG-PCL-based nanomedicines: a biodegradable drug delivery system and its application (2017) J. Control. Release, 260, pp. 46-60
Hiki, S., Kataoka, K., A facile synthesis of azido-terminated heterobifunctional poly(ethylene glycol)s for “Click” conjugation (2007) Bioconjug. Chem., 18, pp. 2191-2196
Himo, F., Lovell, T., Hilgraf, R., Rostovtsev, V.V., Noodleman, L., Sharpless, K.B., Fokin, V.V., Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates (2005) J. Am. Chem. Soc., 127, pp. 210-216
Ishii, T., Yamada, M., Hirase, T., Nagasaki, Y., New synthesis of heterobifunctional poly(ethylene glycol) possessing a pyridyl disulfide at one end and a carboxylic acid at the other end (2005) Polym. J., 37, pp. 221-228
Li, Z., Chau, Y., Synthesis of heterobifunctional poly(ethylene glycol)s by an acetal protection method (2010) Polym. Chem., 1, pp. 1599-1601
Li, Z., Tan, B.H., Towards the development of polycaprolactone based amphiphilic block copolymers: molecular design, self-assembly and biomedical applications (2014) Mater. Sci. Eng. C, 45, pp. 620-634
Liu, L., Zheng, M., Renette, T., Kissel, T., Modular synthesis of folate conjugated ternary copolymers: polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol)-folate for targeted gene delivery (2012) Bioconjug. Chem., 23, pp. 1211-1220
Mahou, R., Wandrey, C., Versatile route to synthesize heterobifunctional poly(ethylene glycol) of variable functionality for subsequent pegylation (2012) Polymer, 4, p. 561
Nahrwold, M., Weiß, C., Bogner, T., Mertink, F., Conradi, J., Sammet, B., Palmisano, R., Sewald, N., Conjugates of modified cryptophycins and RGD-peptides enter target cells by endocytosis (2013) J. Med. Chem., 56, pp. 1853-1864
Owens, D.E., 3rd, Peppas, N.A., Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles (2006) Int. J. Pharm., 307, pp. 93-102
Quaglia, F., Ostacolo, L., De Rosa, G., La Rotonda, M.I., Ammendola, M., Nese, G., Maglio, G., Vauthier, C., Nanoscopic core-shell drug carriers made of amphiphilic triblock and star-diblock copolymers (2006) Int. J. Pharm., 324, pp. 56-66
Rabanel, J.M., Hildgen, P., Banquy, X., Assessment of PEG on polymeric particles surface, a key step in drug carrier translation (2014) J. Control. Release, 185, pp. 71-87
Raynaud, J., Absalon, C., Gnanou, Y., Taton, D., N-Heterocyclic carbene-induced zwitterionic ring-opening polymerization of ethylene oxide and direct synthesis of α,ω-difunctionalized poly(ethylene oxide)s and poly(ethylene oxide)-b-poly(ε-caprolactone) block copolymers (2009) J. Am. Chem. Soc., 131, pp. 3201-3209
Szekely, G., Schaepertoens, M., Gaffney, P.R.J., Livingston, A.G., Iterative synthesis of monodisperse PEG homostars and linear heterobifunctional PEG (2014) Polym. Chem., 5, pp. 694-697
Thompson, M.S., Vadala, T.P., Vadala, M.L., Lin, Y., Riffle, J.S., Synthesis and applications of heterobifunctional poly(ethylene oxide) oligomers (2008) Polymer, 49, pp. 345-373
Tirino, P., Conte, C., Ordegno, M., Palumbo, R., Ungaro, F., Quaglia, F., Maglio, G., Y- and H-shaped amphiphilic PEG-PCL block copolymers synthesized combining ring-opening polymerization and click chemistry: characterization and self-assembly behavior (2014) Macromol. Chem. Phys., 215, pp. 1218-1229
Trindade, A.F., Frade, R.F.M., Macoas, E.M.S., Graca, C., Rodrigues, C.A.B., Martinho, J.M.G., Afonso, C.A.M., “Click and go”: simple and fast folic acid conjugation (2014) Org. Biomol. Chem., 12, pp. 3181-3190
Ungaro, F., Conte, C., Ostacolo, L., Maglio, G., Barbieri, A., Arra, C., Misso, G., Quaglia, F., Core-shell biodegradable nanoassemblies for the passive targeting of docetaxel: features, antiproliferative activity and in vivo toxicity (2012) Nanomedicine, 8, pp. 637-646
Viola-Villegas, N., Rabideau, A.E., Cesnavicious, J., Zubieta, J., Doyle, R.P., Targeting the folate receptor (FR): imaging and cytotoxicity of ReI conjugates in FR-overexpressing cancer cells (2008) ChemMedChem, 3, pp. 1387-1394
Walkey, C.D., Olsen, J.B., Guo, H., Emili, A., Chan, W.C., Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake (2012) J. Am. Chem. Soc., 134, pp. 2139-2147
Xu, Q., Ensign, L.M., Boylan, N.J., Schon, A., Gong, X., Yang, J.C., Lamb, N.W., Hanes, J., Impact of surface polyethylene glycol (PEG) density on biodegradable nanoparticle transport in mucus ex vivo and distribution in vivo (2015) ACS Nano, 9, pp. 9217-9227
Shedding light on surface exposition of poly(ethylene glycol) and folate targeting units on nanoparticles of poly(ε-caprolactone) diblock copolymers: Beyond a paradigm
Shedding light on surface exposition of poly(ethylene glycol) and folate targeting units on nanoparticles of poly(ε-caprolactone) diblock copolymers: Beyond a paradigm
Shedding light on surface exposition of poly(ethylene glycol) and folate targeting units on nanoparticles of poly(ε-caprolactone) diblock copolymers: Beyond a paradigm
Vitiello M, Finamore E, Falanga A, Raieta K, Cantisani M, Galdiero F, Pedone C, Galdiero M, Galdiero S * Fusion in Coq(479 views) Lecture Notes In Computer Science (ISSN: 0302-9743, 0302-974335404636319783540463634, 0302-974335402975459783540297543), 2001; 2178LNCS: 583-596. Impact Factor:0.415 ViewExport to BibTeXExport to EndNote