The zinc - but not cadmium - containing zeta-carbonic from the diatom Thalassiosira weissflogii is potently activated by amines and amino acids(279 views) Angeli A, Buonanno M, Donald WA, Monti SM, Supuran CT
Neurofarba Dept., Universita degli Studi di Firenze, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy., Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, 80134 Naples, Italy., School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia., Neurofarba Dept., Universita degli Studi di Firenze, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy; School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia. Electronic address: claudiu.supuran@unifi.it.,
References: Cox, E.H., McLendon, G.L., Morel, F.M., Lane, T.W., Prince, R.C., Pickering, I.J., George, G.N., The active site structure of Thalassiosira weissflogii carbonic anhydrase 1 (2000) Biochemistry, 39, pp. 12128-1213
Xu, Y., Feng, L., Jeffrey, P.D., Shi, Y., Morel, F.M., Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms (2008) Nature, 452, pp. 56-61
Tachibana, M., Allen, A.E., Kikutani, S., Tsuji, Y., Miyatake, A., Matsuda, Y., Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana (2011) Photosynth. Res., 109, pp. 205-221
McGinn, P.J., Morel, F.M., Expression and regulation of carbonic anhydrases in the marine diatom Thalassiosira pseudonana and in natural phytoplankton assemblages from Great Bay, New Jersey (2008) Physiol. Plant, 133, pp. 78-91
Larkum, A.W.D., Davey, P.A., Kuo, J., Ralph, P.J., Raven, J.A., Carbon-concentrating mechanisms in seagrasses (2017) J. Exp. Bot., 68, pp. 3773-3784
Poschenrieder, C., Fernández, J.A., Rubio, L., Pérez, L., Terés, J., Barceló, J., Transport and use of bicarbonate in plants: current knowledge and challenges ahead (2018) Int. J. Mol. Sci., 19, p. E1352
Capasso, C., Supuran, C.T., An overview of the alpha-, beta-and gamma-carbonic anhydrases from Bacteria: can bacterial carbonic anhydrases shed new light on evolution of bacteria? (2015) J. Enzyme Inhib. Med. Chem., 30, pp. 325-332
Del Prete, S., Vullo, D., Fisher, G.M., Andrews, K.T., Poulsen, S.A., Capasso, C., Supuran, C.T., Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum–the η-carbonic anhydrases (2014) Bioorg. Med. Chem. Lett., 24, pp. 4389-4396
Supuran, C.T., Structure-based drug discovery of carbonic anhydrase inhibitors (2012) J. Enzyme Inhib. Med. Chem., 27, pp. 759-772
Vullo, D., Del Prete, S., Osman, S.M., De Luca, V., Scozzafava, A., Alothman, Z., Supuran, C.T., Capasso, C., Sulfonamide inhibition studies of the δ-carbonic anhydrase from the diatom Thalassiosira weissflogii (2014) Bioorg. Med. Chem. Lett., 24, pp. 275-279
Supuran, C.T., Carbonic anhydrases: from biomedical applications of the inhibitors and activators to biotechnological use for CO2 capture (2013) J. Enzyme Inhib. Med. Chem., 28, pp. 229-230
Supuran, C.T., How many carbonic anhydrase inhibition mechanisms exist? (2016) J. Enzyme Inhib. Med. Chem., 31, pp. 345-360
Alterio, V., Di Fiore, A., D'Ambrosio, K., Supuran, C.T., De Simone, G., Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? (2012) Chem. Rev., 112, pp. 4421-4468
Supuran, C.T., Advances in structure-based drug discovery of carbonic anhydrase inhibitors (2017) Expert Opin. Drug Discov., 12, pp. 61-88
Neri, D., Supuran, C.T., Interfering with pH regulation in tumours as a therapeutic strategy (2011) Nat. Rev. Drug Discov., 10, pp. 767-777
Supuran, C.T., Vullo, D., Manole, G., Casini, A., Scozzafava, A., Designing of novel carbonic anhydrase inhibitors and activators (2004) Curr. Med. Chem. Cardiovasc. Hematol. Agents, 2, pp. 49-68
Alterio, V., Langella, E., Viparelli, F., Vullo, D., Ascione, G., Dathan, N.A., Morel, F.M., Monti, S.M., Structural and inhibition insights into carbonic anhydrase CDCA1 from the marine diatom Thalassiosira weissflogii (2012) Biochimie, 94, pp. 1232-1241
Viparelli, F., Monti, S.M., De Simone, G., Innocenti, A., Scozzafava, A., Xu, Y., Morel, F.M., Supuran, C.T., Inhibition of the R1 fragment of the cadmium-containing zeta-class carbonic anhydrase from the diatom Thalassiosira weissflogii with anions (2010) Bioorg. Med. Chem. Lett., 20, pp. 4745-4748
Briganti, F., Mangani, S., Orioli, P., Scozzafava, A., Vernaglione, G., Supuran, C.T., Carbonic anhydrase activators: X-ray crystallographic and spectroscopic investigations for the interaction of isozymes I and II with histamine (1997) Biochemistry, 36, pp. 10384-10392
Clare, B.W., Supuran, C.T., Carbonic anhydrase activators. 3: structure-activity correlations for a series of isozyme II activators (1994) J. Pharm. Sci., 83, pp. 768-773
Ilies, M., Scozzafava, A., Supuran, C.T., Carbonic anhydrase activators (2004) Carbonic Anhydrase – its inhibitors and activators, pp. 317-352. , C.T. Supuran A. Scozzafava J. Conway CRC Press Boca Raton
Akocak, S., Lolak, N., Vullo, D., Durgun, M., Supuran, C.T., Synthesis and biological evaluation of histamine Schiff bases as carbonic anhydrase I, II, IV, VII, and IX activators (2017) J. Enzyme Inhib. Med. Chem., 32, pp. 1305-1312
Angeli, A., Vaiano, F., Mari, F., Bertol, E., Supuran, C.T., Psychoactive substances belonging to the amphetamine class potently activate brain carbonic anhydrase isoforms VA, VB, VII, and XII (2017) J. Enzyme Inhib. Med. Chem., 32, pp. 1253-1259
Licsandru, E., Tanc, M., Kocsis, I., Barboiu, M., Supuran, C.T., A class of carbonic anhydrase I - selective activators (2017) J. Enzyme Inhib. Med. Chem., 32, pp. 37-46
Temperini, C., Scozzafava, A., Supuran, C.T., Carbonic anhydrase activators: the first X-ray crystallographic study of an adduct of isoform I (2006) Bioorg. Med. Chem. Lett., 16, pp. 5152-5156
Temperini, C., Innocenti, A., Scozzafava, A., Mastrolorenzo, A., Supuran, C.T., Carbonic anhydrase activators: L-Adrenaline plugs the active site entrance of isozyme II, activating better isoforms I, IV, VA, VII, and XIV (2007) Bioorg. Med. Chem. Lett., 17, pp. 628-635
Huang, S., Hainzl, T., Grundström, C., Forsman, C., Samuelsson, G., Sauer-Eriksson, A.E., Structural studies of β-carbonic anhydrase from the green alga Coccomyxa: inhibitor complexes with anions and acetazolamide (2011) PLoS One, 6, p. e28458
Tripp, B.C., Ferry, J.G., A structure-function study of a proton transport pathway in the gamma-class carbonic anhydrase from Methanosarcina thermophila (2000) Biochemistry, 39, pp. 9232-9240
Angeli, A., Del Prete, S., Osman, S.M., Alasmary, F.A.S., AlOthman, Z., Donald, W.A., Capasso, C., Supuran, C.T., Activation studies of the α- and β-carbonic anhydrases from the pathogenic bacterium Vibrio cholerae with amines and amino acids (2018) J. Enzyme Inhib. Med. Chem., 33, pp. 227-233
Vullo, D., De, L.V., Scozzafava, A., Carginale, V., Rossi, M., Supuran, C.T., Capasso, C., The first activation study of a bacterial carbonic anhydrase (CA). The thermostable α-CA from Sulfurihydrogenibium yellowstonense YO3AOP1 is highly activated by amino acids and amines (2012) Bioorg. Med. Chem. Lett., 22, pp. 6324-6327
Innocenti, A., Zimmerman, S.A., Scozzafava, A., Ferry, J.G., Supuran, C.T., Carbonic anhydrase activators: activation of the archaeal beta-class (Cab) and gamma-class (Cam) carbonic anhydrases with amino acids and amines (2008) Bioorg. Med. Chem. Lett., 18, pp. 6194-6198
Angeli, A., Alasmary, F.A.S., Del Prete, S., Osman, S.M., AlOthman, Z., Donald, W.A., Capasso, C., Supuran, C.T., The first activation study of a δ-carbonic anhydrase: TweCAδ from the diatom Thalassiosira weissflogii is effectively activated by amines and amino acids (2018) J. Enzyme Inhib. Med. Chem., 33, pp. 680-685
Khalifah, R.G., The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C (1971) J. Biol. Chem., 246, pp. 2561-2573
The zinc - but not cadmium - containing zeta-carbonic from the diatom Thalassiosira weissflogii is potently activated by amines and amino acids