Artificial Heme Enzymes for the Construction of Gold-Based Biomaterials(242 views) Zambrano G, Ruggiero E, Malafronte A, Chino M, Maglio O, Pavone V, Nastri F, Lombardi A
Department of Chemical Sciences, University of Napoli "Federico II" Via Cintia, 80126 Napoli, Italy. gerardo.zambrano@unina.it., Department of Chemical Sciences, University of Napoli "Federico II" Via Cintia, 80126 Napoli, Italy. emmanuel.ruggiero@basf.com., Department of Chemical Sciences, University of Napoli "Federico II" Via Cintia, 80126 Napoli, Italy. anna.malafronte@unina.it., Department of Chemical Sciences, University of Napoli "Federico II" Via Cintia, 80126 Napoli, Italy. marco.chino@unina.it., Department of Chemical Sciences, University of Napoli "Federico II" Via Cintia, 80126 Napoli, Italy. ornella.maglio@unina.it., Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy. ornella.maglio@unina.it., Department of Chemical Sciences, University of Napoli "Federico II" Via Cintia, 80126 Napoli, Italy. vincenzo.pavone@unina.it., Department of Chemical Sciences, University of Napoli "Federico II" Via Cintia, 80126 Napoli, Italy. flavia.nastri@unina.it., Department of Chemical Sciences, University of Napoli "Federico II" Via Cintia, 80126 Napoli, Italy. alombard@unina.it.,
BASF SE, Dept. Material Physics, Carl-Bosch-Strasse 38, Ludwigshafen, 67056, Germany
References: Nastri, F., Chino, M., Maglio, O., Bhagi-Damodaran, A., Lu, Y., Lombardi, A., Design and engineering of artificial oxygen-activating metalloenzymes (2016) Chem. Soc. Rev., 45, pp. 5020-505
Grayson, K.J., Anderson, J.L.R., The ascent of man (Made oxidoreductases) (2018) Curr. Opin. Struct. Biol., 51, pp. 149-155
Hyster, T.K., Ward, T.R., Genetic optimization of metalloenzymes: Enhancing enzymes for non-natural reactions (2016) Angew. Chem. Int. Ed., 55, pp. 7344-7357
Schwizer, F., Okamoto, Y., Heinisch, T., Gu, Y., Pellizzoni, M.M., Lebrun, V., Reuter, R., Ward, T.R., Artificial metalloenzymes: Reaction scope and optimization strategies (2017) Chem. Rev., 118, pp. 142-231
Lewis, J.C., Artificial metalloenzymes and metallopeptide catalysts for organic synthesis (2013) ACS Catal, 3, pp. 2954-2975
Mocny, C.S., Pecoraro, V.L., De novo protein design as a methodology for synthetic bioinorganic chemistry (2015) Acc. Chem. Res., 48, pp. 2388-2396
Yu, F., Cangelosi, V.M., Zastrow, M.L., Tegoni, M., Plegaria, J.S., Tebo, A.G., Mocny, C.S., Pecoraro, V.L., Protein design: Toward functional metalloenzymes (2014) Chem. Rev., 114, pp. 3495-3578
Jeschek, M., Panke, S., Ward, T.R., Artificial metalloenzymes on the verge of new-to-nature metabolism (2018) Trends Biotechnol, 36, pp. 60-72
Petrik, I.D., Liu, J., Lu, Y., Metalloenzyme design and engineering through strategic modifications of native protein scaffolds (2014) Curr. Opin. Chem. Biol., 19, pp. 67-75
Yu, Y., Hu, C., Xia, L., Wang, J., Artificial metalloenzyme design with unnatural amino acids and non-native cofactors (2018) ACS Catal, 8, pp. 1851-1863
Jeschek, M., Reuter, R., Heinisch, T., Trindler, C., Klehr, J., Panke, S., Ward, T.R., Directed evolution of artificial metalloenzymes for in vivo metathesis (2016) Nature, 537, pp. 661-665
Chino, M., Leone, L., Zambrano, G., Pirro, F., D’Alonzo, D., Firpo, V., Aref, D., Nastri, F., Oxidation catalysis by iron and manganese porphyrins within enzyme-like cages (2018) Biopolymers
Yu, Y., Cui, C., Liu, X., Petrik, I.D., Wang, J., Lu, Y., A designed metalloenzyme achieving the catalytic rate of a native enzyme (2015) J. Am. Chem. Soc., 137, pp. 11570-11573
Oohora, K., Meichin, H., Kihira, Y., Sugimoto, H., Shiro, Y., Hayashi, T., Manganese(V) porphycene complex responsible for inert c–h bond hydroxylation in a myoglobin matrix (2017) J. Am. Chem. Soc., 139, pp. 18460-18463
Dydio, P., Key, H.M., Nazarenko, A., Rha, J.Y., Seyedkazemi, V., Clark, D.S., Hartwig, J.F., An artificial metalloenzyme with the kinetics of native enzymes (2016) Science, 354, pp. 102-106
Key, H.M., Dydio, P., Clark, D.S., Hartwig, J.F., Abiological catalysis by artificial haem proteins containing noble metals in place of iron (2016) Nature, 534, pp. 534-537
Arnold, F.H., Directed evolution: Bringing new chemistry to life (2017) Angew. Chem. Int. Ed, 56, pp. 2-8
Hammer, S.C., Kubik, G., Watkins, E., Huang, S., Minges, H., Arnold, F.H., Anti-Markovnikov alkene oxidation by metal-oxo–mediated enzyme catalysis (2017) Science, 358, pp. 215-218
Kan, S.B.J., Lewis, R.D., Chen, K., Arnold, F.H., Directed evolution of cytochrome c for carbon-silicon bond formation: Bringing silicon to life (2016) Science, 354, pp. 1048-1051
Kan, S.B.J., Huang, X., Gumulya, Y., Chen, K., Arnold, F.H., Genetically programmed chiral organoborane synthesis (2017) Nature, 552, pp. 132-136
Chen, K., Huang, X., Kan, S.B.J., Zhang, R.K., Arnold, F.H., Enzymatic construction of highly strained carbocycles (2018) Science, 360, pp. 71-75
Caserta, G., Chino, M., Firpo, V., Zambrano, G., Leone, L., D’Alonzo, D., Nastri, F., Lombardi, A., Enhancement of peroxidase activity in the artificial Mimochrome VI catalysts through rational design (2018) Chembiochem
Watkins, D.W., Jenkins, J.M.X., Grayson, K.J., Wood, N., Steventon, J.W., Vay, K.K.L., Goodwin, M.I., Crump, M.P., Construction and in vivo assembly of a catalytically proficient and hyperthermostable de novo enzyme (2017) Nat. Commun., 8
Bilal, M., Iqbalb, H.M.N., Guoa, S., Hua, H., Wanga, W., Zhang, X., State-of-the-art protein engineering approaches using biological macromolecules: A review from immobilization to implementation view point (2018) Int. J. Biol. Macromol., 108, pp. 893-901
Sheldon, R.A., van Pelt, S., Enzyme immobilisation in biocatalysis: Why, what and how (2013) Chem. Soc. Rev., 42, pp. 6223-6235
Ansari, S.A., Husain, Q., Potential applications of enzymes immobilized on/in nano materials: A review (2012) Biotechnol. Adv., 30, pp. 512-523
Algar, W.R., Prasuhn, D.E., Stewart, M.H., Jennings, T.L., Blanco-Canosa, J.B., Dawson, P.E., Medintz, I.L., The Controlled Display of Biomolecules on Nanoparticles: A Challenge Suited to Bioorthogonal Chemistry (2011) Bioconjug. Chem., 22, pp. 825-858
Katz, E., Willner, I., Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications (2004) Angew. Chem. Int. Ed. Engl., 43, pp. 6042-6108
Zdarta, J., Meyer, A.S., Jesionowski, T., Pinelo, M., A General overview of support materials for enzyme immobilization: Characteristics, properties, practical utility (2018) Catalysts, 8, p. 92
Chen, M., Zeng, G., Xu, P., Lai, C., Tang, L., How do enzymes ‘meet’ nanoparticles and nanomaterials? (2017) Trends Biochem. Sci., 42, pp. 914-930
Cipolatti, E.P., Silva, M.J.A., Klein, M., Feddern, V., Feltes, M.C., Oliveira, J.V., Ninow, J.L., de Oliveira, D., Current status and trends in enzymatic nanoimmobilization (2014) J. Mol. Cat. B, 99, pp. 56-67
Auriemma, F., de Rosa, C., Malafronte, A., Di Girolamo, R., Santillo, C., Gerelli, Y., Fragneto, G., Maglio, O., Nano-in-nano approach for enzyme immobilization based on block copolymers (2017) ACS Appl. Mater. Interfaces, 9, pp. 29318-29327
Daniel, M.C., Astruc, D., Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology (2004) Chem. Rev., 104, pp. 293-346
Jia, H., Zhu, G., Wang, P., Catalytic behaviors of enzymes attached to nanoparticles: The effect of particle mobility (2003) Biotechnol. Bioeng., 84, pp. 406-414
Noll, T., Noll, G., Strategies for “wiring” redox-active proteins to electrodes and applications in biosensors, biofuel cells, and nanotechnology (2011) Chem. Soc. Rev., 40, pp. 3564-3576
Schneider, E., Clark, D.S., Cytochrome P450 (CYP) enzymes and the development of CYP biosensors (2013) Biosens. Bioelectron, 39, pp. 1-13
Sadeghi, S.J., Fantuzzi, G., Gilardi, G., Breakthrough in P450 bioelectrochemistry and future perspectives (2011) Biochim. Biophys. Acta, 1814, pp. 237-248
Netto, C.G.C.M., Toma, H.E., Andrade, L.H., Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes (2013) J. Mol. Cat. B, pp. 85-86. , 71–92
Lu, D., Pang, G., A novel tetrahydrocannabinol electrochemical nano immunosensor based on horseradish peroxidase and double-layer gold nanoparticles (2016) Molecules, 21, p. 1377
Tang, D., Tang, J., Su, B., Li, Q., Chen, G., Electrochemical detection of hepatitis C virus with signal amplification using BamHI endonuclease and horseradish peroxidase-encapsulated nanogold hollow spheres (2011) Chem. Commun., 47, pp. 9477-9479
D’Auria, G., Maglio, O., Nastri, F., Lombardi, A., Mazzeo, M., Morelli, G., Paolillo, L., Pavone, V., Hemoprotein Models Based on a Covalent Helix–Heme–Helix Sandwich: 2. Structural Characterization of CoIIIMimochrome I δ and δ Isomers (1997) Chem. Eur. J., 3, pp. 350-362
Lombardi, A., Nastri, F., Sanseverino, M., Maglio, O., Pedone, C., Pavone, V., Miniaturized hemoproteins: Design, synthesis and characterization of mimochrome II (1998) Inorg. Chim. Acta, 301, pp. 275-276
Di Costanzo, L., Geremia, S., Randaccio, L., Nastri, F., Maglio, O., Lombardi, A., Pavone, V., Miniaturized heme proteins: Crystal structure of Co(III)-mimochrome IV (2004) J. Biol. Inorg. Chem., 9, pp. 1017-1027
Nastri, F., Lista, L., Ringhieri, P., Vitale, R., Faiella, M., Andreozzi, C., Travascio, P., Pavone, V., A Heme-peptide metalloenzyme mimetic with natural peroxidase-like activity (2011) Chem. Eur. J., 17, pp. 4444-4453
Vicari, C., Saraiva, I.H., Maglio, O., Nastri, F., Pavone, V., Louro, R.O., Lombardi, A., Artificial heme-proteins: Determination of axial ligand orientations through paramagnetic NMR shifts (2014) Chem. Commun., 50, pp. 3852-3855
Ranieri, A., Monari, S., Sola, M., Borsari, M., Battistuzzi, G., Ringhieri, P., Nastri, F., Lombardi, A., Redox and electrocatalytic properties of mimochrome VI, a synthetic heme peptide adsorbed on gold (2010) Langmuir, 26, pp. 17831-17835
Vitale, R., Lista, L., Lau-Truong, S., Tucker, R.T., Brett, M.J., Limoges, B., Pavone, V., Balland, V., Spectroelectrochemistry of FeIII-and CoIII-mimochrome VI artificial enzymes immobilized on mesoporous ITO electrodes (2014) Chem. Commun., 50, pp. 1894-1896
Ding, S., Cargill, A.A., Medintz, I.L., Claussen, J.C., Increasing the activity of immobilized enzymes with nanoparticle conjugation (2015) Curr. Opin. Biotech., 34, pp. 242-250
Walper, S.A., Turner, K.B., Medintz, I.L., Enzymatic bioconjugation of nanoparticles: Developing specificity and control (2015) Curr. Opin. Biotech., 34, pp. 232-241
Ahmad, R., Sardar, M., Enzyme Immobilization: An Overview on Nanoparticles as Immobilization Matrix (2015) Anal. Biochem., 4
Ulman, A., Formation and structure of self-assembled monolayers (1996) Chem. Rev., 96, pp. 1533-1554
Wink, T., van Zuilen, S.J., Bult, A., van Bennekom, W.P., Self-assembled monolayers for biosensors (1997) Analyst, 122, pp. 43R-50R
Mahl, D., Greulich, C., Meyer-Zaika, W., Koller, M., Epple, M., Gold nanoparticles: Dispersibility in biological media and cell-biological effect (2010) J. Mater. Chem., 20, pp. 6176-6181
Pérez-Rentero, S., Grijalvo, S., Peñuelas, G., Fàbrega, C., Eritja, R., Thioctic acid derivatives as building blocks to incorporate DNA oligonucleotides onto gold nanoparticles (2014) Molecules, 19, pp. 10495-10523
Koufaki, M., Detsi, A., Kiziridi, C., Multifunctional lipoic acid conjugates (2009) Curr. Med. Chem., 16, pp. 4728-4742
Maglio, O., Costanzo, S., Cercola, R., Zambrano, G., Mauro, M., Battaglia, R., Ferrini, G., Lombardi, A., QCM immunosensor for stem cell selection and extraction (2017) Sensors, 17
Ahirwal, G.K., Mitra, C.K., Direct electrochemistry of horseradish peroxidase-gold nanoparticles conjugate (2009) Sensors, 9, pp. 881-894
Onoda, A., Ueya, Y., Sakamoto, T., Uematsua, T., Hayashi, T., Supramolecular hemoprotein—gold nanoparticle conjugates (2010) Chem. Commun., 46, pp. 9107-9109
Dougan, J.A., Karlsson, C., Smith, W.E., Graham, D., Enhanced oligonucleotide—nanoparticle conjugate stability using thioctic acid modified oligonucleotides (2007) Nucleic Acids Res, 35, pp. 3668-3675
Sharp, M., Petersson, M., Edstrom, K.J., Preliminary determinations of electron transfer kinetics involving ferrocene covalently attached to a platinum surface (1979) J. Electroanal. Chem., 95, pp. 123-130
John Wiley & Sons Inc.: New York, NY, USA, ISBN 0471043729
Zhao, P., Li, N., Astruc, D., State of the art in gold nanoparticle synthesis (2013) Coord. Chem. Rev., 257, pp. 638-665
Turkevich, J., Stevenson, P.C., Hillier, J., A study of the nucleation and growth processes in the synthesis of colloidal gold (1951) Discuss. Faraday Soc., 11, pp. 55-75
Templeton, A.C., Pietron, J.J., Murray, R.W., Mulvaney, P., Solvent refractive index and core charge influences on the surface plasmon absorbance of alkanethiolate monolayer-protected gold clusters (2000) J. Phys. Chem. B, 104, pp. 564-570
de Carlo, S., Harris, J.R., Negative staining and cryo-negative staining of macromolecules and viruses for TEM (2011) Micron, 42, pp. 117-131
Michen, B., Geers, C., Vanhecke, D., Endes, C., Rothen-Rutishauser, B., Balog, S., Petri-Fink, A., Avoiding drying-artifacts in transmission electron microscopy: Characterizing the size and colloidal state of nanoparticles (2015) Sci. Rep., 5
Mattoussi, H., Mauro, J.M., Goldman, E.R., Anderson, G.P., Sundar, V.C., Mikulec, F.V., Bawendi, M.G., Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein (2000) J. Am. Chem. Soc., 122, pp. 12142-12150
Cebula, J., Ottewill, R.H., Ralston, J., Pusey, P.N., Investigations of microemulsions by light scattering and neutron scattering (1981) J. Chem. Soc. Faraday Trans., 1 (77), pp. 2585-2612
Lobanov, M.Y., Bogatyreva, N.S., Galzitskaya, O.V., Radius of Gyration as an Indicator of Protein Structure Compactness (2008) Mol. Biol., 42, pp. 623-628
Dewald, I., Isakin, O., Schubert, J., Kraus, T., Chanana, M., Protein identity and environmental parameters determine the final physicochemical properties of protein-coated metal nanoparticles (2015) J. Phys. Chem. C, 119, pp. 25482-25492
Rodrigues, R.C., Ortiz, C., Berenguer-Murcia, A., Torres, R., Fernández-Lafuente, R., Modifying enzyme activity and selectivity by immobilization (2013) Chem. Soc. Rev., 42, pp. 6290-6307
Santos, J.C.S.D., Barbosa, O., Ortiz, C., Berenguer-Murcia, A., Rodrigues, R.C., Fernandez-Lafuente, R., Importance of the support properties for immobilization or purification of enzymes (2015) Chemcatchem, 7, pp. 2413-2432
Männel, M.J., Kreuzer, L.P., Goldhahn, C., Schubert, J., Hart, M.J., Chanana, M., Catalytically active protein coatings: Toward enzymatic cascade reactions at the intercolloidal level (2017) ACS Catal, 7, pp. 1664-1672
Ni, Y., Li, Y., Huang, Z., He, K., Zhuang, J., Yang, W., Improved activity of immobilized horseradish peroxidase on gold nanoparticles in the presence of bovine serum albumin (2013) J. Nanopart. Res, 15
Tadepalli, S., Wang, Z., Slocik, J., Naik, R.R., Singamanen, S., Effect of size and curvature on the enzyme activity of bionanoconjugates (2017) Nanoscale, 9, pp. 15666-15672
Lata, J.P., Gao, L., Mukai, C., Cohen, R., Nelson, J.L., Anguish, L., Coonrod, S., Travis, A.J., Effects of nanoparticle size on multilayer formation and kinetics of tethered enzymes (2015) Bioconjug. Chem., 26, pp. 1931-1938
Jamison, J.A., Bryant, E.L., Kadali, S.B., Wong, M.S., Colvin, V.L., Matthews, K.S., Calabretta, M.K., Altering protein surface charge with chemical modification modulates protein–gold nanoparticle aggregation (2011) J. Nanopart. Res., 13, pp. 625-636
Frens, G., Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions (1973) Nat. Phys. Sci., 241, pp. 20-22
Haiss, W., Thanh, N.T.K., Aveyard, J., Fernig, D.G., Determination of size and concentration of gold nanoparticles from UV-vis spectra (2007) Anal. Chem., 79, pp. 4215-4221
Carvalhal, R.F., Freire, R.S., Kubota, L.T., Polycrystalline gold electrodes: A comparative study of pretreatment procedures used for cleaning and thiol self-assembly monolayer formation (2005) Electroanalysis, 17, pp. 1251-1259
Ranganathan, S., Kuo, T.-C., McCreery, R.L., Facile preparation of active glassy carbon electrodes with activated carbon and organic solvents (1999) Anal. Chem., 71, pp. 3574-3580
Childs, R.E., Bardsley, W.G., The steady-state kinetics of peroxidase with 2,2′-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen (1975) Biochem. J., 145, pp. 93-103
Cleland, W.W., The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations (1963) Biochim. Biophys. Acta, 67, pp. 104-137
Artificial Heme Enzymes for the Construction of Gold-Based Biomaterials