Binding mode of AIF(370–394) peptide to CypA: insights from NMR, label-free and molecular docking studies(1064 views) Farina B, Sturlese M, Mascanzoni F, Caporale A, Monti A, Sorbo GD, Fattorusso R, Ruvo M, Doti N
Keywords: Alanine, Amino Acid, Apoptosis Inducing Factor, Cyclophilin A, Amino Terminal Sequence, Article, Carboxy Terminal Sequence, Cell Death, Circular Dichroism, Molecular Docking, Molecular Dynamics, Molecular Model, Mutagenesis, Nuclear Magnetic Resonance Spectroscopy, Nuclear Overhauser Effect, Peptide Synthesis, Preservation, Priority Journal, Protein Binding, Protein Conformation, Protein Protein Interaction,
Affiliations: *** IBB - CNR ***
Istituto di Biostrutture e Bioimmagini (IBB)-CNR and CIRPeB, Via Mezzocannone 16, Napoli, 80134, Italy
Molecular Modeling Section, Dipartimento di Scienze del Farmaco, Università di Padova, via F. Marzolo 5, Padova, 35131, Italy
Advanced Accelerator Applications (AAA), Via Vivaldi, 43, Caserta, 81100, Italy
Istituto di Biochimica delle Proteine (IBP)-CNR, Via Pietro Castellino, Napoli, 80131, Italy
Becton Dickinson Italia S.p.A, Via Enrico Cialdini 16, Milano, 20161, Italy
References: Sevrioukova, I.F., Apoptosis-inducing factor: Structure, function, and redox regulation (2011) Antioxid. Redox Signal., 14, pp. 2545-2579. , https://doi.org/10.1089/ars.2010.344
Polster, B.M., AIF, reactive oxygen species, and neurodegeneration: A ‘complex’ problem (2013) Neurochem. Int., 62, pp. 695-702. , https://doi.org/10.1016/j.neuint.2012.12.002
Delavallée, L., Cabon, L., Galàn-Malo, P., Lorenzo, H.K., Susin, S.A., AIF-mediated caspase-independent necroptosis: A new chance for targeted therapeutics (2011) IUBMB, 63, pp. 221-232. , https://doi.org/10.1002/iub.432
Pallast, S., Arai, K., Pekcec, A., Yigitkanli, K., Yu, Z., Wang, X., Increased nuclear apoptosis-inducing factor after transient focal ischemia: A 12/15-lipoxygenase-dependent organelle damage pathway (2010) J. Cereb. Blood Flow Metab., 30, pp. 1157-1167. , https://doi.org/10.1038/jcbfm.2009.281
Yu, W., Mechawar, N., Krantic, S., Quirion, R., Evidence for the involvement of apoptosis-inducing factor-mediated caspase-independent neuronal death in Alzheimer disease (2010) Am. J. Pathol., 176, pp. 2209-2218. , https://doi.org/10.2353/ajpath.2010.090496
Piao, C.S., Loane, D.J., Stoica, B.A., Li, S., Hanscom, M., Cabatbat, R., Combined inhibition of cell death induced by apoptosis inducing factor and caspases provides additive neuroprotection in experimental traumatic brain injury (2012) Neurobiol. Dis., 46, pp. 745-758. , https://doi.org/10.1016/j.nbd.2012.03.018
Yin, W., Cao, G., Johnnides, M.J., Signore, A.P., Luo, Y., Hickey, R.W., TAT-mediated delivery of Bcl-xL protein is neuroprotective against neonatal hypoxic-ischemic brain injury via inhibition of caspases and AIF (2006) Neurobiol. Dis., 21, pp. 358-371. , https://doi.org/10.1016/j.nbd.2005.07.015
Gurbuxani, S., Schmitt, E., Cande, C., Parcellier, A., Hammann, A., Daugas, E., Heat shock protein 70 binding inhibits the nuclear import of apoptosis-inducing factor (2003) Oncogene, 22, pp. 6669-6678. , https://doi.org/10.1038/sj.onc.1206794
Cregan, S.P., Fortin, A., MacLaurin, J.G., Callaghan, S.M., Cecconi, F., Yu, S.W., Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death (2002) J. Cell Biol., 158, pp. 507-517. , https://doi.org/10.1083/jcb.200202130
Candé, C., Vahsen, N., Kouranti, I., Schmitt, E., Daugas, E., Spahr, C., AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis (2004) Oncogene, 23, pp. 1514-1521. , https://doi.org/10.1038/sj.onc.1207279
Artus, C., Boujrad, H., Bouharrour, A., Brunelle, M.N., Hoos, S., Yuste, V.J., AIF promotes chromatinolysis and caspase-independent programmed necrosis by interacting with histone H2AX (2010) EMBO J, 29, pp. 1585-1599. , https://doi.org/10.1038/emboj.2010.43
Wang, P., Heitman, J., The cyclophilins (2005) Genome Biol, 6, p. 226. , https://doi.org/10.1186/gb-2005-6-7-226
Colgan, J., Asmal, M., Yu, B., Luban, J., Cyclophilin A-deficient mice are resistant to immunosuppression by cyclosporine (2005) J. Immunol., 174, pp. 6030-6038. , https://doi.org/10.4049/jimmunol.174.10.6030
Doti, N., Reuther, C., Scognamiglio, P.L., Dolga, A.M., Plesnila, N., Ruvo, M., Inhibition of the AIF/CypA complex protects against intrinsic death pathways induced by oxidative stress (2014) Cell Death Dis, 5, p. e993. , https://doi.org/10.1038/cddis.2013.518
Farina, B., Di Sorbo, G., Chambery, A., Caporale, A., Leoni, G., Russo, R., Structural and biochemical insights of CypA and AIF interaction (2017) Sci. Rep., 7, p. 1138. , https://doi.org/10.1038/s41598-017-01337-8
Caporale, A., Doti, N., Sandomenico, A., Ruvo, M., Evaluation of combined use of Oxyma and HATU in aggregating peptide sequences (2017) J. Pept. Sci., 23, pp. 272-281. , https://doi.org/10.1002/psc.2977
Lee, S., Han, X., Choi, K.J., Ding, Y., Choi, T., Tak, E., A new method for purification of functional recombinant GST-cyclophilin A protein from E. Coli (2008) Ind. J. Biochem. Biophys., 208, pp. 374-387. , PMID:19239122
Lorenzo, V., Mascanzoni, F., Vitagliano, L., Ruvo, M., Doti, N., The interacting domains of PREP1 and p160 are endowed with a remarkable structural stability (2016) Mol. Biotechnol., 58, pp. 328-339. , https://doi.org/10.1007/s12033-016-9932-3
Oppermann, S., Schrader, F.C., Elsässer, K., Dolga, A.M., Kraus, A.L., Doti, N., Novel N-phenyl-substituted thiazolidinediones protect neural cells against glutamate- And tBid-induced toxicity (2014) J. Pharmacol. Exp. Ther., 350, pp. 273-289. , https://doi.org/10.1124/jpet.114.213777
Braunschweiler, L., Ernst, R.R., Coherence transfer by isotropic mixing: Application to proton correlation spectroscopy (1983) J. Magn. Reson., 53, pp. 521-528. , https://doi.org/10.1016/0022-2364(83)90226-3
Rance, M., Sørensen, O.W., Bodenhausen, G., Wagner, G., Ernst, R.R., Wüthrich, K., Improved spectral resolution in COSY 1H NMR spectra of proteins via double quantum filtering (1983) Biochem. Biophys. Res. Commun., 117, pp. 479-485. , https://doi.org/10.1016/0006-291X(83)91225-1
Kumar, A., Ernst, R.R., Wuthrich, K., A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules (1980) Biochem. Biophys. Res. Commun., 95, pp. 1-6. , https://doi.org/10.1016/0006-291X(80)90695-6
Wutrich, K., (1986) NMR of Proteins and Nucleic Acids, , Wiley-Interscience, New York
Farina, B., Doti, N., Pirone, L., Malgieri, G., Pedone, E.M., Ruvo, M., Molecular basis of the PED/PEA15 interaction with the C-terminal fragment of phospholipase D1 revealed by NMR spectroscopy (2013) Biochim. Biophys. Acta., 1834, pp. 1572-1580. , https://doi.org/10.1016/j.bbapap.2013.04.012
Schwieters, C.D., Kuszewski, J.J., Tjandra, N., Clore, G.M., The Xplor-NIH NMR molecular structure determination package (2003) J. Magn. Reson., 160, pp. 65-73. , https://doi.org/10.1016/S1090-7807(02)00014-9
Caporale, A., Sturlese, M., Gesiot, L., Zanta, F., Wittelsberger, A., Cabrele, C., Side chain cyclization based on serine residues: Synthesis, structure, and activity of a novel cyclic analogue of the parathyroid hormone fragment 1-11 (2010) J. Med. Chem., 53, pp. 8072-8079. , https://doi.org/10.1021/jm1008264
(2016) Molecular Operating Environment (MOE), Chemical Computing Group (CCG), , Montreal, QC, Canada
Fraser, J.S., Clarkson, M.W., Degnan, S.C., Erion, R., Kern, D., Alber, T., Hidden alternative structures of proline isomerase essential for catalysis (2009) Nature, 462, pp. 669-673. , https://doi.org/10.1038/nature08615
Han, B., Liu, Y., Ginzinger, S.W., Wishart, D.S., SHIFTX2: Significantly improved protein chemical shift prediction (2011) J. Biomol. NMR, 50, pp. 43-57. , https://doi.org/10.1007/s10858-011-9478-4
Case, D.A., Babin, V., Berryman, J.T., Betz, R.M., Cai, Q., Cerutti, D., (2014) Amber14, Version AMBER14, , http://ambermd.org/, University of California, San Francisco, accessed October 2015
Harvey, M.J., Giupponi, G., Fabritiis, G.D., ACEMD: Accelerating biomolecular dynamics in the microsecond time scale (2009) J. Chem. Theory Comput., 5, pp. 1632-1639. , https://doi.org/10.1021/ct9000685
Salmaso, V., Sturlese, M., Cuzzolin, A., Moro, S., DockBench as docking selector tool: The lesson learned from D3R Grand Challenge 2015 (2016) J. Comput. Aided Mol. Des., 30, pp. 773-789. , https://doi.org/10.1007/s10822-016-9966-4
Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., Machine learning for neuroimaging with scikit-learn (2014) Frontiers in Neuroinformatics, 8, p. 14. , https://doi.org/10.3389/fninf.2014.00014
Bakan, A., Meireles, L.M., Bahar, I., Prody: Protein dynamics inferred from theory and experiments (2011) Bioinformatics, 27, pp. 1575-1577. , https://doi.org/10.1093/bioinformatics/btr168
Ye, H., Cande, C., Stephanou, N.C., Jiang, S., Gurbuxani, S., Larochette, N., DNA binding is required for the apoptogenic action of apoptosis inducing factor (2002) Nat. Struct. Biol., 9, pp. 680-684. , https://doi.org/10.1038/nsb836
Mayer, M., Meyer, B., Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor (2001) J. Am. Chem. Soc., 123, pp. 6108-6117. , https://doi.org/10.1021/ja0100120
London, N., Movshovitz-Attias, D., Schueler-Furman, O., The structural basis of peptide-protein binding strategies (2010) Structure, 18, pp. 188-199. , https://doi.org/10.1016/j.str.2009.11.012
Smith, L.J., Fiebig, K.M., Schwalbe, H., Dobson, C.M., The concept of a random coil residual structure in peptides and denatured proteins (1996) Fold. Des., 1, pp. R95-R106. , https://doi.org/10.1016/S1359-0278(96)00046-6
Li, G., Cui, Q., What is so special about Arg 55 in the catalysis of Cyclophilin A? Insights from hybrid QM/MM simulations (2003) J. Am. Chem. Soc., 125, pp. 15028-15038. , https://doi.org/10.1021/ja0367851
Dong, M., Ding, X.Q., Thomas, S.E., Gao, F., Lam, P.C., Abagyan, R., Role of lysine187 within the second extracellular loop of the type A cholecystokinin receptor in agonist-induced activation. Use of complementary charge-reversal mutagenesis to define a functionally important interdomain interaction (2007) Biochemistry, 46, pp. 4522-4531. , https://doi.org/10.1021/bi0622468
Doti, N., Ruvo, M., Relevance and therapeutic potential of CypA targeting to block AIF-mediated neuronal cell death (2017) Neural Regen. Res., 12, pp. 1428-1429. , https://doi.org/10.4103/1673-5374.215248
Doshi, U., Holliday, M.J., Eisenmesser, E.Z., Hamelberga, D., Dynamical network of residue–residue contacts reveals coupled allosteric effects in recognition, catalysis, and mutation (2016) Proc. Natl Acad. Sci. U.S.A., 113, pp. 4735-4740. , https://doi.org/10.1073/pnas.1523573113
Binding mode of AIF(370–394) peptide to CypA: insights from NMR, label-free and molecular docking studies
Kállay C, Dávid A, Timári S, Nagy EM, Sanna D, Garribba E, Micera G, De Bona P, Pappalardo G, Rizzarelli E, Sóvágó I * Copper(II) complexes of rat amylin fragments(357 views) Dalton T (ISSN: 1477-9234, 1477-9226, 1477-9234electronic), 2011 Oct 14; 40(38): 9711-9721. Impact Factor:3.838 ViewExport to BibTeXExport to EndNote
Aloj L, Aurilio M, Rinaldi V, D'Ambrosio L, Tesauro D, Peitl PK, Maina T, Mansi R, Von Guggenberg E, Joosten L, Sosabowski JK, Breeman WA, De Blois E, Koelewijn S, Melis M, Waser B, Beetschen K, Reubi JC, De Jong M * The EEE project(449 views) Proc Int Cosm Ray Conf Icrc Universidad Nacional Autonoma De Mexico, 2007; 5(HEPART2): 977-980. Impact Factor:0 ViewExport to BibTeXExport to EndNote