Fluorescence sensing using DNA Aptamers in cancer research and clinical diagnostics(273 views) Musumeci D, Platella C, Riccardi C, Moccia F, Montesarchio D
Keywords: Cancer Biomarkers, Dna Aptamers, Fluorescence Sensing, Fluorescently-Labelled Aptamers, Label-Free Aptamers, Tumour Diagnosis, Angiogenin, Elastase, Lysozyme, Microrna, Mucin, Nanoparticle, Pegaptanib, Platelet Derived Growth Factor, Protein Tyrosine Kinase, Quantum Dot, Single Walled Nanotube, Small Interfering Rna, Thrombin, Tumor Marker, Unclassified Drug, Vasculotropin, Binding Kinetics, Cancer Cell, Cancer Diagnosis, Cancer Research, Clinical Assessment, Diagnostic Imaging, Enzymatic Assay, Fluorescence Analysis, Fluorescence Resonance Energy Transfer, Intraoperative Period, Molecular Recognition, Next Generation Sequencing, Non Invasive Procedure, Nuclear Magnetic Resonance Spectroscopy, Protein Secondary Structure, Review, Signal Processing, Systematic Evolution Of Ligands By Exponential Enrichment Aptamer Technique, X Ray Crystallography,
Affiliations: *** IBB - CNR ***
Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli, 80126, Italy
CNR, Istituto di Biostrutture e Bioimmagini, Via Mezzocannone 16, Napoli, 80134, Italy
CNR, Istituto per l’Endocrinologia e l’Oncologia ‘Gaetano Salvatore,’, Via Pansini 5, Napoli, 80131, Italy
References: Hernandez, L., Machado, I., Schafer, T., Hernandez, F., Aptamers overview: Selection, features and applications (2015) Curr. Top. Med. Chem, 15, pp. 1066-1081. , CrossRefPubMe
Mayer, G., The chemical biology of aptamers (2009) Angew. Chem. Int. Ed. Eng, 48, pp. 2672-2689. , CrossRefPubMed
Darmostuk, M., Rimpelova, S., Gbelcova, H., Ruml, T., Current approaches in SELEX: An update to aptamer selection technology (2015) Biotechnol. Adv, 33, pp. 1141-1161. , CrossRefPubMed
Vu, M.M., Jameson, N.E., Masuda, S.J., Lin, D., Larralde-Ridaura, R., Lupták, A., Convergent evolution of adenosine aptamers spanning bacterial, human, and random sequences revealed by structure-based bioinformatics and genomic SELEX (2012) Chem. Biol, 19, pp. 1247-1254. , CrossRefPubMed
Fujimoto, Y., Nakamura, Y., Ohuchi, S., HEXIM1-binding elements on mRNAs identified through transcriptomic SELEX and computational screening (2012) Biochimie, 94, pp. 1900-1909. , CrossRefPubMed
Keefe, A.D., Cload, S.T., SELEX with modified nucleotides (2008) Curr. Opin. Chem. Biol, 12, pp. 448-456. , CrossRefPubMed
Gold, L., Ayers, D., Bertino, J., Bock, C., Bock, A., Brody, E.N., Carter, J., Fitzwater, T., Aptamer-based multiplexed proteomic technology for biomarker discovery (2010) Plos ONE, p. 5. , CrossRefPubMed
Pinheiro, V.B., Taylor, A.I., Cozens, C., Abramov, M., Renders, M., Zhang, S., Chaput, J.C., McLaughlin, S.H., Synthetic genetic polymers capable of heredity and evolution (2012) Science, 336, pp. 341-344. , CrossRefPubMed
Tolle, F., Brändle, G.M., Matzner, D., Mayer, G., A versatile approach towards nucleobase-modified aptamers (2015) Angew. Chem. Int. Ed. Eng, 54, pp. 10971-10974. , CrossRefPubMed
Ishino, S., Ishino, Y., DNA polymerases as useful reagents for biotechnology—The history of developmental research in the field (2014) Front. Microbiol, 5, pp. 465-473. , CrossRefPubMed
Chen, T., Romesberg, F.E., Directed polymerase evolution (2014) FEBS Lett, 588, pp. 219-229. , CrossRefPubMed
Berezovski, M., Drabovich, A., Krylova, S.M., Musheev, M., Okhonin, V., Petrov, A., Krylov, S.N., Nonequilibrium capillary electrophoresis of equilibrium mixtures: A universal tool for development of aptamers (2005) J. Am. Chem. Soc, 127, pp. 3165-3171. , CrossRefPubMed
Gopinath, S.C.B., Methods developed for SELEX (2007) Anal. Bioanal. Chem, 387, pp. 171-182. , CrossRefPubMed
Berezovski, M.V., Musheev, M.U., Drabovich, A.P., Jitkova, J.V., Krylov, S.N., Non-SELEX: Selection of aptamers without intermediate amplification of candidate oligonucleotides (2006) Nat. Protoc, 1, pp. 1359-1369. , CrossRefPubMed
Schütze, T., Wilhelm, B., Greiner, N., Braun, H., Peter, F., Mörl, M., Erdmann, V.A., Glökler, J., Probing the SELEX process with next-generation sequencing (2011) Plos ONE, p. 6. , CrossRefPubMed
Quang, N.N., Perret, G., Ducongé, F., Applications of high-throughput sequencing for in vitro selection and characterization of aptamers (2016) Pharmaceuticals, 9, p. 76. , CrossRefPubMed
Chodosh, L.A., UV crosslinking of proteins to nucleic acids (2001) Curr. Protoc. Mol. Biol, , Chapter 12. Unit 12.5, CrossRef
Wilkinson, K.A., Merino, E.J., Weeks, K.M., Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): Quantitative RNA structure analysis at single nucleotide resolution (2006) Nat. Protoc., 1, pp. 1610-1616. , CrossRefPubMed
Papavassiliou, A.G., Determination of a transcription factor-binding site by nuclease protection footprinting onto southwestern blots (2009) Methods Mol. Biol, 543, pp. 201-218. , CrossRefPubMed
Cerchia, L., Giangrande, P.H., McNamara, J.O., De Franciscis, V., Pansini, V., Cell-Specific aptamers for targeted therapies (2009) Methods Mol. Biol, 535, pp. 59-78. , CrossRefPubMed
Quang, N.N., Miodek, A., Cibiel, A., Ducongé, F., Selection of aptamers against whole living cells: From cell-SELEX to identification of biomarkers (2017) Methods Mol. Biol., 1575, pp. 253-272. , CrossRefPubMed
Mercier, M.C., Dontenwill, M., Choulier, L., Selection of nucleic acid aptamers targeting tumor cell-surface protein biomarkers (2017) Cancers, 9, p. 69. , CrossRefPubMed
Khedri, M., Rafatpanah, H., Abnous, K., Ramezani, P., Ramezani, M., Cancer immunotherapy via nucleic acid aptamers (2015) Int. Immunopharmacol, 29, pp. 926-936. , CrossRefPubMed
Kumar, P.K.R., Monitoring intact viruses using aptamers (2016) Biosensors, 6, p. 40. , CrossRefPubMed
Ruigrok, V.J.B., Levisson, M., Eppink, M.H.M., Smidt, H., Van Der Oost, J., Alternative affinity tools: More attractive than antibodies? (2011) Biochem. J., 436, pp. 1-13. , CrossRefPubMed
Keefe, A.D., Pai, S., Ellington, A., Aptamers as therapeutics (2010) Nat. Rev. Drug Discov, 9, pp. 537-550. , CrossRefPubMed
Tan, W., Wang, H., Chen, Y., Zhang, X., Zhu, H., Yang, C., Yang, R., Liu, C., Molecular aptamers for drug delivery (2011) Trends Biotechnol, 29, pp. 634-640. , CrossRefPubMed
Zhu, G., Ye, M., Donovan, M.J., Song, E., Zhao, Z., Tan, W., Nucleic acid aptamers: An emerging frontier in cancer therapy (2012) Chem. Commun, 48, pp. 10472-10480. , CrossRefPubMed
Maier, K.E., Levy, M., From selection hits to clinical leads: Progress in aptamer discovery (2016) Mol. Ther. Methods Clin. Dev., 5, pp. 16014-16023. , CrossRefPubMed
Zhou, J., Rossi, J., Aptamers as targeted therapeutics: Current potential and challenges (2016) Nat. Rev. Drug Discov, 16, pp. 181-202. , CrossRefPubMed
Cho, E.J., Lee, J.W., Ellington, A.D., Applications of aptamers as sensors (2009) Annu. Rev. Anal. Chem, 2, pp. 241-264. , CrossRefPubMed
Santosh, B., Yadava, P.K., Nucleic acid aptamers: Research tools in disease diagnostics and therapeutics (2014) Biomed. Res. Int, 2014, pp. 50451-50464. , CrossRefPubMed
Xiang, D., Shigdar, S., Qiao, G., Wang, T., Kouzani, A.Z., Zhou, S.F., Kong, L., Duan, W., Nucleic acid aptamer-guided cancer therapeutics and diagnostics: The next generation of cancer medicine (2015) Theranostics, 5, pp. 23-42. , CrossRefPubMed
Kim, Y.S., Raston, N.H.A., Gu, B.M., Aptamer-based nanobiosensors (2016) Biosens. Bioelectron, 76, pp. 2-19. , CrossRefPubMed
Sun, H., Tan, W., Zu, Y., Aptamers: Versatile molecular recognition probes for cancer detection (2016) Analyst, 141, pp. 403-415. , CrossRefPubMed
Wang, R.E., Wu, H., Niu, Y., Cai, J., Improving the stability of aptamers by chemical modification (2011) Curr. Med. Chem, 18, pp. 4126-4138. , CrossRefPubMed
Ng, E.W.M., Shima, D.T., Calias, P., Cunningham, E.T., Guyer, D.R., Adamis, A.P., Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease (2006) Nat. Rev. Drug Discov, 5, pp. 123-132. , CrossRefPubMed
Pratico, E.D., Sullenger, B.A., Nair, S.K., Identification and characterization of an agonistic aptamer against the T cell costimulatory receptor, OX40 (2013) Nucleic Acid Ther, 23, pp. 35-43. , CrossRefPubMed
Ramaswamy, V., Monsalve, A., Sautina, L., Segal, M.S., Dobson, J., Allen, J.B., DNA aptamer assembly as a vascular endothelial growth factor receptor agonist (2015) Nucleic Acid Ther, 25, pp. 227-234. , CrossRefPubMed
Yunn, N.O., Koh, A., Han, S., Lim, J.H., Park, S., Lee, J., Kim, E., Ryu, S.H., Agonistic aptamer to the insulin receptor leads to biased signaling and functional selectivity through allosteric modulation (2015) Nucleic Acids Res, 43, pp. 7688-7701. , CrossRefPubMed
Yu, Y., Liang, C., Lv, Q., Li, D., Xu, X., Liu, B., Lu, A., Zhang, G., Molecular selection, modification and development of therapeutic oligonucleotide aptamers (2016) Int. J. Mol. Sci, 17, p. 358. , CrossRefPubMed
Drolet, D.W., Green, L.S., Gold, L., Janjic, N., Fit for the eye: Aptamers in ocular disorders (2016) Nucleic Acid Ther, 26, pp. 127-146. , CrossRefPubMed
Becker, R.C., Povsic, T., Mauricio, C.G., Rusconi, C.P., Sullenger, B., Nucleic acid aptamers as antithrombotic agents: Opportunities in extracellular therapeutics (2010) Thromb. Haemost., 103, pp. 586-595. , CrossRefPubMed
Qu, J., Yu, S., Zheng, Y., Zheng, Y., Yang, H., Zhang, J., Aptamer and its applications in neurodegenerative diseases (2016) Cell. Mol. Life Sci, 74, pp. 683-695. , CrossRefPubMed
Shum, K.T., Zhou, J., Rossi, J.J., Aptamer-based therapeutics: New approaches to combat human viral diseases (2013) Pharmaceuticals, 6, pp. 1507-1542. , CrossRefPubMed
Musumeci, D., Riccardi, C., Montesarchio, D., G-Quadruplex forming oligonucleotides as anti-HIV agents (2015) Molecules, 20, pp. 17511-17532. , CrossRefPubMed
Hermann, T., Patel, D.J., Adaptive recognition by nucleic acid aptamers (2000) Science, 287, pp. 820-825. , CrossRefPubMed
Cheng, A.K.H., Sen, D., Yu, H.Z., Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules (2009) Bioelectrochemistry, 77, pp. 1-12. , CrossRefPubMed
Lim, Y.C., Kouzani, A.Z., Duan, W., Aptasensors: A review (2010) J. Biomed. Nanotechnol, 6, pp. 93-105. , CrossRefPubMed
Iliuk, A.B., Hu, L., Tao, W.A., Aptamer in bioanalytical applications (2011) Anal. Chem, 83, pp. 4440-4452. , CrossRefPubMed
Zhang, H., Zhou, L., Zhu, Z., Yang, C., Recent progress in aptamer-based functional probes for bioanalysis and biomedicine (2016) Chem. A Eur. J., 22, pp. 9886-9900. , CrossRefPubMed
Sun, W., Song, W., Guo, X., Wang, Z., Ultrasensitive detection of nucleic acids and proteins using quartz crystal microbalance and surface plasmon resonance sensors based on target-triggering multiple signal amplification strategy (2017) Anal. Chim. Acta, 978, pp. 42-47. , CrossRefPubMed
Zeng, X., Zhang, X., Yang, W., Jia, H., Li, Y., Fluorescence detection of adenosine triphosphate through an aptamer-molecular beacon multiple probe (2012) Anal. Biochem, 424, pp. 8-11. , CrossRefPubMed
Zhang, H., Li, F., Dever, B., Li, X.F., Le, X.C., DNA-mediated homogeneous binding assays for nucleic acids and proteins (2013) Chem. Rev, 113, pp. 2812-2841. , CrossRefPubMed
Feng, C., Dai, S., Wang, L., Optical aptasensors for quantitative detection of small biomolecules: A review (2014) Biosens. Bioelectron., 59, pp. 64-74. , CrossRefPubMed
Xiang, Y., Lu, Y., DNA as sensors and imaging agents for metal Ions (2014) Inorg. Chem, 53, pp. 1125-1942. , CrossRefPubMed
Sassolas, A., Blum, L.J., Leca-Bouvier, B.D., Homogeneous assays using aptamers (2011) Analyst, 136, pp. 257-274. , CrossRefPubMed
Jhaveri, S.D., Kirby, R., Conrad, R., Maglott, E.J., Bowser, M., Kennedy, R.T., Glick, G., Ellington, A.D., Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity (2000) J. Am. Chem. Soc, 122, pp. 2469-2473. , CrossRef
Katilius, E., Katiliene, Z., Woodbury, N.W., Signaling aptamers created using fluorescent nucleotide analogues (2006) Anal. Chem, 78, pp. 6484-6489. , CrossRefPubMed
Lerga, T.M., O’Sullivan, C.K., Rapid determination of total hardness in water using fluorescent molecular aptamer beacon (2008) Anal. Chim. Acta, 610, pp. 105-111. , CrossRefPubMed
Swathi, R.S., Sebastian, K.L., Resonance energy transfer from a dye molecule to graphene (2008) J. Chem. Phys, 129, p. 54703. , CrossRefPubMed
Chang, H., Tang, L., Wang, Y., Jiang, J., Li, J., Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection (2010) Anal. Chem, 82, pp. 2341-2346. , CrossRefPubMed
Xiao, Y., Lubin, A.A., Baker, B.R., Plaxco, K.W., Heeger, A.J., Single-step electronic detection of femtomolar DNA by target-induced strand displacement in an electrode-bound duplex (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 16677-16680. , CrossRefPubMed
Li, N., Ho, C.M., Aptamer-based optical probes with separated molecular recognition and signal transduction modules (2008) J. Am. Chem. Soc, 130, pp. 2380-2381. , CrossRefPubMed
Stojanovic, M.N., De Prada, P., Landry, D.W., Aptamer-based folding fluorescent sensor for cocaine (2001) J. Am. Chem. Soc, 123, pp. 4928-4931. , CrossRefPubMed
Liu, C., Huang, C., Chang, H., Highly selective DNA-based sensor for lead(II) and mercury (II) ions (2009) Anal. Chem, 81, pp. 2383-2387. , CrossRefPubMed
Li, B., Qin, C., Li, T., Wang, L., Dong, S., Flourescent switch constructed based on hemin-sensitive anionic conjugated polymer and its applications in DNA-related sensors (2009) Anal. Chem, 81, pp. 3544-3550. , CrossRefPubMed
Zhu, Z., Yang, C., Zhou, X., Qin, J., Label-free aptamer-based sensors for L-argininamide by using nucleic acid minor groove binding dyes (2011) Chem. Commun, 47, pp. 3192-3194. , CrossRefPubMed
Xu, W., Lu, Y., Label-free fluorescent aptamer sensor based on regulation of malachite green fluorescence (2010) Anal. Chem, 82, pp. 574-578. , CrossRefPubMed
Huang, C.C., Chang, H.T., Aptamer-based fluorescence sensor for rapid detection of potassium ions in urine (2008) Chem. Commun, pp. 1461-1463. , CrossRefPubMed
Huntington, J.A., Baglin, T.P., Targeting thrombin—Rational drug design from natural mechanisms (2003) Trends Pharmacol. Sci, 24, pp. 589-595. , CrossRefPubMed
Huntington, J.A., Molecular recognition mechanisms of thrombin (2005) J. Thromb. Haemost, 3, pp. 1861-1872. , CrossRefPubMed
Crawley, J.T.B., Zanardelli, S., Chion, C.K.N.K., Lane, D.A., The central role of thrombin in hemostasis (2007) J. Thromb. Haemost, 5, pp. 95-101. , CrossRefPubMed
Wolberg, A.S., Thrombin generation and fibrin clot structure (2007) Blood Rev, 21, pp. 131-142. , CrossRefPubMed
Di Cera, E., Thrombin (2008) Mol. Aspects Med, 29, pp. 203-254. , CrossRefPubMed
Licari, L.G., Kovacic, J.P., Thrombin physiology and pathophysiology (2009) J. Vet. Emerg. Crit. Care, 19, pp. 11-22. , CrossRefPubMed
Sokolova, E., Reiser, G., Prothrombin/thrombin and the thrombin receptors PAR-1 and PAR-4 in the brain: Localization, expression and participation in neurodegenerative diseases (2008) Thromb. Haemost., 100, pp. 576-581. , CrossRefPubMed
Franchini, M., Mannucci, P.M., Thrombin and cancer: From molecular basis to therapeutic implications (2012) Semin. Thromb. Hemost, 38, pp. 95-101. , CrossRefPubMed
Danckwardt, S., Hentze, M.W., Kulozik, A.E., Pathologies at the nexus of blood coagulation and inflammation: Thrombin in hemostasis, cancer, and beyond (2013) J. Mol. Med., 91, pp. 1257-1271. , CrossRefPubMed
Shuman, M.A., Majerus, P.W., The measurement of thrombin in clotting blood by radioimmunoassay (1976) J. Clin. Invest, 58, pp. 1249-1258. , CrossRefPubMed
Brummel-Ziedins, K.E., Vossen, C.Y., Butenas, S., Mann, K.G., Rosendaal, F.R., Thrombin generation profiles in deep venous thrombosis (2005) J. Thromb. Haemost, 3, pp. 2497-2505. , CrossRefPubMed
Bock, L.C., Griffin, L.C., Latham, J.A., Vermaas, E.H., Toole, J.J., Selection of single-stranded DNA molecules that bind and inhibit human thrombin (1992) Nature, 355, pp. 564-566. , CrossRefPubMed
Macaya, R.F., Schultze, P., Smith, F.W., Roet, J.A., Feigon, J., Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution (1993) Proc. Natl. Acad. Sci. USA, 90, pp. 3745-3749. , CrossRefPubMed
Musumeci, D., Montesarchio, D., Polyvalent nucleic acid aptamers and modulation of their activity: A focus on the thrombin binding aptamer (2012) Pharmacol. Ther, 136, pp. 202-215. , CrossRefPubMed
Tasset, D.M., Kubik, M.F., Steiner, W., Oligonucleotide inhibitors of human thrombin that bind distinct epitopes (1997) J. Mol. Biol, 272, pp. 688-698. , CrossRefPubMed
Deng, B., Lin, Y., Wang, C., Li, F., Wang, Z., Zhang, H., Li, X.F., Le, X.C., Aptamer binding assays for proteins: The thrombin example-a review (2014) Anal. Chim. Acta, 837, pp. 1-15. , CrossRefPubMed
Platella, C., Riccardi, C., Montesarchio, D., Roviello, G.N., Musumeci, D., G-quadruplex-based aptamers against protein targets in therapy and diagnostics (1861) BBA Gen. Subj, 2017, pp. 1429-1447. , CrossRefPubMed
Yan, S., Huang, R., Zhou, Y., Zhang, M., Deng, M., Wang, X., Weng, X., Zhou, X., Aptamer-based turn-on fluorescent four-branched quaternary ammonium pyrazine probe for selective thrombin detection (2011) Chem. Commun, 47, pp. 1273-1275. , CrossRefPubMed
Zhang, X., Hu, R., Shao, N., Label-free sensing of thrombin based on quantum dots and thrombin binding aptamer (2013) Talanta, 107, pp. 140-145. , CrossRefPubMed
Du, C., Hu, Y., Zhang, Q., Guo, Z., Ge, G., Wang, S., Zhai, C., Zhu, M., Competition-derived FRET-switching cationic conjugated polymer-Ir(III) complex probe for thrombin detection (2017) Biosens. Bioelectron, 100, pp. 132-138. , CrossRefPubMed
Li, J.J., Fang, X., Tan, W., Molecular aptamer beacons for real-time protein recognition. (2002) Biochem. Biophys. Res. Commun, 292, pp. 31-40. , CrossRefPubMed
De Tito, S., Morvan, F., Meyer, A., Vasseur, J.J., Cummaro, A., Petraccone, L., Pagano, B., Giancola, C., Fluorescence enhancement upon G-quadruplex folding: Synthesis, structure, and biophysical characterization of a dansyl/cyclodextrin-tagged thrombin binding aptamer (2013) Bioconjugate Chem, 24, pp. 1917-1927. , CrossRefPubMed
Coppola, C., Paciello, A., Mangiapia, G., Licen, S., Boccalon, M., De Napoli, L., Paduano, L., Montesarchio, D., Design, synthesis and characterisation of a fluorescently labelled CyPLOS ionophore (2010) Chemistry, 16, pp. 13757-13772. , CrossRefPubMed
Riccardi, C., Russo Krauss, I., Musumeci, D., Morvan, F., Meyer, A., Vasseur, J.J., Paduano, L., Montesarchio, D., Fluorescent thrombin binding aptamer-tagged nanoparticles for an efficient and reversible control of thrombin activity (2017) ACS Appl. Mater. Interfaces, 9, pp. 35574-35587. , CrossRefPubMed
Hamaguchi, N., Ellington, A., Stanton, M., Aptamer beacons for the direct detection of proteins (2001) Anal. Biochem, 294, pp. 126-131. , CrossRefPubMed
Nutiu, R., Li, Y., Structure-switching signaling aptamers (2003) J. Am. Chem. Soc, 125, pp. 4771-4778. , CrossRefPubMed
Wang, W., Chen, C., Qian, M., Zhao, X.S., Aptamer biosensor for protein detection using gold nanoparticles (2008) Anal. Biochem, 373, pp. 213-219. , CrossRefPubMed
Nambi Krishnan, J., Park, S.-H., Kim, S., Aptamer-based single-step assay by the fluorescence enhancement on electroless plated nano Au substrate (2017) Sensors, 17, p. 2044. , CrossRefPubMed
Yang, R., Tang, Z., Yan, J., Kang, H., Kim, Y., Zhu, Z., Tan, W., Noncovalent assembly of carbon nanotubes and single-stranded DNA: An effective sensing platform for probing biomolecular interactions (2008) Anal. Chem, 80, pp. 7408-7413. , CrossRefPubMed
Li, H., Zhang, Y., Luo, Y., Sun, X., Nano-C60: A novel, effective, fluorescent sensing platform for biomolecular detection (2011) Small, 7, pp. 1562-1568. , CrossRefPubMed
Yu, J.M., Yang, L.R., Liang, X.F., Dong, T.T., Liu, H.Z., Bare magnetic nanoparticles as fluorescence quenchers for detection of thrombin (2015) Analyst, 140, pp. 4114-4120. , CrossRefPubMed
Zhang, Y., Li, B., Jin, Y., Label-free fluorescent detection of thrombin using G-quadruplex-based DNAzyme as sensing platform (2011) Analyst, 136, pp. 3268-3273. , CrossRefPubMed
Zheng, D., Zou, R., Lou, X., Label-free fluorescent detection of ions, proteins, and small molecules using structure-switching aptamers, SYBR Gold, and exonuclease I. (2012) Anal. Chem, 84, pp. 3554-3560. , CrossRefPubMed
Levy, M., Cater, S.F., Ellington, A.D., Quantum-dot aptamer beacons for the detection of proteins (2005) Chembiochem, 6, pp. 2163-2166. , CrossRefPubMed
Heyduk, E., Heyduk, T., Nucleic acid-based fluorescence sensors for detecting proteins. (2005) Anal. Chem, 77, pp. 1147-1156. , CrossRefPubMed
Xue, L., Zhou, X., Xing, D., Sensitive and homogeneous protein detection based on target-triggered aptamer hairpin switch and nicking enzyme assisted fluorescence signal amplification (2012) Anal. Chem, 84, pp. 3507-3513. , CrossRefPubMed
Wei, Y., Zhou, W., Liu, J., Chai, Y., Xiang, Y., Yuan, R., Label-free and homogeneous aptamer proximity binding assay for fluorescent detection of protein biomarkers in human serum (2015) Talanta, 141, pp. 230-234. , CrossRefPubMed
Zhou, C., Jiang, Y., Hou, S., Ma, B., Fang, X., Li, M., Detection of oncoprotein platelet-derived growth factor using a fluorescent signaling complex of an aptamer and TOTO (2006) Anal. Bioanal. Chem., 384, pp. 1175-1180. , CrossRefPubMed
Penmatsa, V., Ruslinda, A.R., Beidaghi, M., Kawarada, H., Wang, C., Platelet-derived growth factor oncoprotein detection using three-dimensional carbon microarrays. (2013) Biosens. Bioelectron, 39, pp. 118-123. , CrossRefPubMed
Wang, X., Jiang, A., Hou, T., Li, H., Li, F., Enzyme-free and label-free fluorescence aptasensing strategy for highly sensitive detection of protein based on target-triggered hy-bridization chain reaction ampli fi cation (2015) Biosens. Bioelectron, 70, pp. 324-329. , CrossRefPubMed
Fang, X., Sen, A., Vicens, M., Tan, W., Synthetic DNA aptamers to detect protein molecular variants in a high-throughput fluorescence quenching assay (2003) Chembiochem, 4, pp. 829-834. , CrossRefPubMed
Liang, J., Wei, R., He, S., Liu, Y., Guo, L., Li, L., A highly sensitive and selective aptasensor based on graphene oxide fluorescence resonance energy transfer for the rapid determination of oncoprotein PDGF-BB (2013) Analyst, 138, pp. 1726-1732. , CrossRefPubMed
Yang, C.J., Jockusch, S., Vicens, M., Turro, N.J., Tan, W., Light-switching excimer probes for rapid protein monitoring in complex biological fluids (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 17278-17283. , CrossRefPubMed
Fang, X., Cao, Z., Beck, T., Tan, W., Biotechnologies, T., Drive, N.R., Diego, S., Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy (2001) Anal. Biochem, 73, pp. 5752-5757. , CrossRef
Zhang, D., Lu, M., Wang, H., Fluorescence anisotropy analysis for mapping aptamer-protein interaction at the single nucleotide level (2011) J. Am. Chem. Soc, 133, pp. 9188-9191. , CrossRefPubMed
Zhao, W., Schafer, S., Choi, J., Yamanaka, Y.J., Lombardi, M.L., Bose, S., Carlson, A.L., Droujinine, I.A., Cell-surface sensors for real-time probing of cellular environments (2011) Nat. Nanotechnol, 6, pp. 524-531. , CrossRefPubMed
Choi, J.-W., Jo, B.-G., Demello, A.J., Choo, J., Kim, H.Y., Streptavidin-triggered signal amplified fluorescence polarization for analysis of DNA-protein interactions (2016) Analyst, 141, pp. 6499-6502. , CrossRefPubMed
Li, W., Wang, K., Tan, W., Ma, C., Yang, X., Aptamer-based analysis of angiogenin by fluorescence anisotropy (2007) Analyst, 132, pp. 107-113. , CrossRefPubMed
Li, W., Yang, X., Wang, K., Tan, W., Li, H., Ma, C., FRET-based aptamer probe for rapid angiogenin detection (2008) Talanta, 75, pp. 770-774. , CrossRefPubMed
Ma, C., Liu, H., Tian, T., Song, X., Yu, J., Yan, M., A simple and rapid detection assay for peptides based on the specific recognition of aptamer and signal amplification of hybridization chain reaction (2016) Biosens. Bioelectron, 83, pp. 15-18. , CrossRefPubMed
He, Y., Lin, Y., Tang, H., Pang, D., A graphene oxide-based fluorescent aptasensor for the turn-on detection of epithelial tumor marker mucin 1 (2012) Nanoscale, 4, pp. 2054-2059. , CrossRefPubMed
Martínez, O., Bellard, E., Golzio, M., Mechiche-Alami, S., Rols, M.-P., Teissié, J., Ecochard, V., Paquereau, L., Direct validation of aptamers as powerful tools to image solid tumor (2014) Nucleic Acid Ther, 24, pp. 217-225. , CrossRefPubMed
Chen, H., Zhao, J., Zhang, M., Yang, H., Ma, Y., Gu, Y., MUC1 aptamer-based near-infrared fluorescence probes for tumor imaging (2015) Mol. Imaging Biol, 17, pp. 38-48. , CrossRefPubMed
Li, J., Sun, K., Chen, Z., Shi, J., Zhou, D., Xie, G., A fluorescence biosensor for VEGF detection based on DNA assembly structure switching and isothermal amplification. (2017) Biosens. Bioelectron, 89, pp. 964-969. , CrossRefPubMed
Li, X., Ding, X., Fan, J., Nicking endonuclease-assisted signal amplification of a split molecular aptamer beacon for biomolecule detection using graphene oxide as a sensing platform (2015) Analyst, 140, pp. 7918-7925. , CrossRefPubMed
Mita, C., Abe, K., Fukaya, T., Ikebukuro, K., Vascular endothelial growth factor (VEGF) detection using an aptamer and PNA-based bound/free separation system (2014) Materials, 7, pp. 1046-1054. , CrossRefPubMed
Wang, S.E., Huang, Y., Hu, K., Tian, J., Zhao, S., A highly sensitive and selective aptasensor based on fluorescence polarization for the rapid determination of oncoprotein vascular endothelial growth factor (VEGF) (2014) Anal. Methods, 6, pp. 62-66. , CrossRef
Wang, S.E., Si, S.A., Fluorescent nanoprobe based on graphene oxide fluorescence resonance energy transfer for the rapid determination of oncoprotein vascular endothelial growth factor (VEGF). (2013) Appl. Spectrosc, 67, pp. 1270-1274. , CrossRefPubMed
Charlton, J., Sennello, J., Smith, D., In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase (1997) Chem. Biol, 4, pp. 809-816. , CrossRef
He, J.L., Wu, Z.S., Zhang, S.B., Shen, G.L., Yu, R.Q., Fluorescence aptasensor based on competitive-binding for human neutrophil elastase detection (2010) Talanta, 80, pp. 1264-1268. , CrossRefPubMed
Wang, Y.M., Wu, Z., Liu, S.J., Chu, X., Structure-switching aptamer triggering hybridization chain reaction on the cell surface for activatable theranostics (2015) Anal. Chem, 87, pp. 6470-6474. , CrossRefPubMed
Calzada, V., Moreno, M., Newton, J., González, J., Fernández, M., Gambini, J.P., Ibarra, M., Cerecetto, H., Development of new PTK7-targeting aptamer-fluorescent and-radiolabelled probes for evaluation as molecular imaging agents: Lymphoma and melanoma in vivo proof of concept (2017) Biorgan. Med. Chem, 25, pp. 1163-1171. , CrossRefPubMed
Tang, D., Liao, D., Zhu, Q., Wang, F., Jiao, H., Zhang, Y., Yu, C., Fuorescence turn-on detection of a protein through the displaced single-stranded DNA binding protein binding to a molecular beacon (2011) Chem. Commun, 47, pp. 5485-5487. , CrossRefPubMed
Chen, C., Zhao, J., Jiang, J., Yu, R., A novel exonuclease III-aided amplification assay for lysozyme based on graphene oxide platform (2012) Talanta, 101, pp. 357-361. , CrossRefPubMed
Huang, J., Zhu, Z., Bamrungsap, S., Zhu, G.Z., You, M.X., He, X.X., Wang, K.M., Tan, W.H., Competition-mediated pyrene-switching aptasensor: Probing lysozyme in human serum with a monomer-excimer fluorescence switch (2010) Anal. Chem, 82, pp. 10158-10163. , CrossRefPubMed
Zou, M., Chen, Y., Xu, X., Huang, H., Liu, F., Li, N., The homogeneous fluorescence anisotropic sensing of salivary lysozyme using the 6-carboxyfluorescein-labeled DNA aptamer (2012) Biosens. Bioelectron, 32, pp. 148-154. , CrossRefPubMed
Wang, J., Liu, B., Fluorescence resonance energy transfer between an anionic conjugated polymer and a dye-labeled lysozyme aptamer for specific lysozyme detection (2009) Chem. Commun, pp. 2284-2286. , CrossRefPubMed
Cui, L., Ke, G., Wang, C., Yang, C.J., A cyclic enzymatic amplification method for sensitive and selective detection of nucleic acids (2010) Analyst, 135, pp. 2069-2073. , CrossRefPubMed
He, J., Li, G., Hu, Y., Aptamer-involved fluorescence amplification strategy facilitated by directional enzymatic hydrolysis for bioassays based on a metal-organic framework platform: Highly selective and sensitive determination of thrombin and oxytetracycline. (2017) Microchim. Acta, 184, pp. 2365-2373. , CrossRef
Fredriksson, L., Li, H., Eriksson, U., The PDGF family: Four gene products form five dimeric isoforms (2004) Cytokine Growth Factor Rev, 15, pp. 197-204. , CrossRefPubMed
Ross, R., Glomset, J., Kariya, B., Harker, L.A., Platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro (1974) Proc. Natl. Acad. Sci. USA, 71, pp. 1207-1210. , CrossRefPubMed
Kohler, N., Lipton, A., Platelets as a source of fibroblast growth-promoting activity (1974) Exp. Cell Res, 87, pp. 297-301. , CrossRef
Westermark, B., Wasteson, A., A platelet factor stimulating human normal glial cells (1976) Exp. Cell Res, 98, pp. 170-174. , CrossRef
Kazlauskas, A., PDGFs and their receptors (2017) Gene, 614, pp. 1-7. , CrossRefPubMed
Tallquist, M., Kazlauskas, A., PDGF signaling in cells and mice (2004) Cytokine Growth Factor Rev, 15, pp. 205-213. , CrossRefPubMed
Chen, P.H.H., Chen, X., He, X., Platelet-derived growth factors and their receptors: Structural and functional perspectives (2013) Biochim. Biophys. Acta (Bba)-Proteins Proteom, 1834, pp. 2176-2186. , CrossRefPubMed
Östman, A., Heldin, C.H., PDGF receptors as targets in tumor treatment (2007) Adv. Cancer Res, 97, pp. 247-274. , CrossRefPubMed
Andrae, J., Gallini, R., Betsholtz, C., Role of platelet-derived growth factors in physiology and medicine (2008) Genes Dev, 22, pp. 1276-1312. , CrossRefPubMed
Heldin, C.H., Targeting the PDGF signaling pathway in tumor treatment (2013) Cell Commun. Signal, 11, p. 97. , CrossRefPubMed
Appiah-Kubi, K., Wang, Y., Qian, H., Wu, M., Yao, X., Wu, Y., Chen, Y., Platelet-derived growth factor receptor/platelet-derived growth factor (PDGFR/PDGF) system is a prognostic and treatment response biomarker with multifarious therapeutic targets in cancers (2016) Tumor Biol, 37, pp. 10053-10066. , CrossRefPubMed
Green, L.S., Jellinek, D., Jenison, R., Arne, O., Heldin, C.H., Janjic, N., Inhibitory, D., Ligands to platelet-derived growth factor B-chain (1996) Biochemistry, 35, pp. 14413-14424. , CrossRefPubMed
Zhang, D., Zhao, Q., Zhao, B., Wang, H., Fluorescence anisotropy reduction of allosteric aptamer for sensitive and specific protein signaling (2012) Anal. Chem, 84, pp. 3070-3074. , CrossRefPubMed
Fredriksson, S., Gullberg, M., Jarvius, J., Olsson, C., Pietras, K., Gústafsdóttir, S.M., Östman, A., Landegren, U., Protein detection using proximity-dependent DNA ligation assays (2002) Nat. Biotechnol, 20, pp. 473-477. , CrossRefPubMed
Cai, S., Cao, Z., Lau, C., Lu, J., Label-free technology for the amplified detection of microRNA based on the allosteric hairpin DNA switch and hybridization chain reaction (2014) Analyst, 139, pp. 6022-6027. , CrossRefPubMed
Chang, Y., Chai, Y., Xie, S., Yuan, Y., Zhang, J., Yuan, R., Cleavage-based hybridization chain reaction for electrochemical detection of thrombin (2014) Analyst, 139, pp. 4264-4269. , CrossRefPubMed
Zhao, J., Hu, S., Cao, Y., Zhang, B., Li, G., Electrochemical detection of protein based on hybridization chain reaction-assisted formation of copper nanoparticles. (2015) Biosens. Bioelectron, 66, pp. 327-331. , CrossRefPubMed
He, B.S., Song, B., Li, D., Zhu, C., Qi, W., Wen, Y., Wang, L., Fan, C., (2010) A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis, 20, pp. 453-459. , CrossRef
Lakowicz, J.R., (2006) Principles of Fluorescence Spectroscopy, , 3rd ed.
Springer: Heidelberg, Germany
Karp, J.M., Sock, G., Teo, L., Mesenchymal stem cell homing: The devil is in the details (2009) Cell Stem Cell, 4, pp. 206-216. , CrossRefPubMed
Ankrum, J., Karp, J.M., Mesenchymal stem cell therapy: Two steps forward, one step back. (2010) Trends Mol. Med, 16, pp. 203-209. , CrossRefPubMed
Sarkar, D., Vemula, P.K., Teo, G.S.L., Spelke, D., Karnik, R., Wee, L.Y., Karp, J.M., Chemical engineering of mesenchymal stem cells to induce a cell rolling response. (2008) Bioconj. Chem, 19, pp. 2105-2109. , CrossRefPubMed
Tello-Montoliu, A., Patel, J.V., Lip, G.Y.H., Angiogenin: A review of the pathophysiology and potential clinical applications (2006) J. Thromb. Haemost, 4, pp. 1864-1874. , CrossRefPubMed
Harper, J.W., Fox, E.A., Shapiro, R., Vallee, B.L., Mutagenesis of residues flanking Lys-40 enhances the enzymatic activity and reduces the angiogenic potency of angiogenin (1990) Biochemistry, 29, pp. 7297-7302. , CrossRefPubMed
Yoshioka, N., Wang, L., Kishimoto, K., Tsuji, T., Hu, G., A therapeutic target for prostate cancer based on angiogenin-stimulated angiogenesis and cancer cell proliferation (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 14519-14524. , CrossRefPubMed
Sheng, J., Xu, Z., Three decades of research on angiogenin: A review and perspective (2016) Acta Biochim. Biophys., 48, pp. 399-410. , CrossRefPubMed
Landt, S., Mordelt, K., Schwidde, I., Barinoff, J., Korlach, S., Stöblen, F., Lichtenegger, W., Kümmel, S., Prognostic significance of the angiogenic factors angiogenin, endoglin and endostatin in cervical cancer (2011) Anticancer Res, 31, pp. 2651-2656. , PubMed
Fang, S., Repo, H., Joensuu, H., Orpana, A., Salven, P., High serum angiogenin at diagnosis predicts for failure on long-term treatment response and for poor overall survival in non-Hodgkin lymphoma (2011) Eur. J. Cancer, 47, pp. 1708-1716. , CrossRefPubMed
Li, D.D., Bell, J., Brown, A., Berry, C.L., The observation of angiogenin and basic fibroblast growth factor gene expression in human colonic adenocarcinomas, gastric adenocarcinomas, and hepatocellular carcinomas (1994) J. Phatol, 172, pp. 171-175. , CrossRefPubMed
Musolino, C., Alonci, A., Bellomo, G., Loteta, B., Quartarone, E., Gangemi, D., Massara, E., Calabro, L., Levels of soluble angiogenin in chronic myeloid malignancies: Clinical implications (2004) Eur. J. Haematol, 72, pp. 416-419. , CrossRefPubMed
Nobile, V., Russo, N., Hu, G.F., Riordan, J.F., Inhibition of human angiogenin by DNA aptamers: Nuclear colocalization of an angiogenin-inhibitor complex (1998) Biochemistry, 37, pp. 6857-6863. , CrossRefPubMed
Kufe, D.W., Mucins in cancer: Function, prognosis and therapy (2009) Nat. Rev. Cancer, 9, pp. 874-885. , CrossRefPubMed
Rahn, J.J., Dabbagh, L., Pasdar, M., Hugh, J.C., The importance of MUC1 cellular localization in patients with breast carcinoma (2001) Cancer, 91, pp. 1973-1982. , CrossRef
Wreesmann, V.B., Sieczka, E.M., Socci, N.D., Hezel, M., Belbin, T.J., Childs, G., Patel, S.G., Prystowsky, M., Genome-wide profiling of papillary thyroid cancer identifies MUC1 as an independent prognostic marker (2004) Cancer Res, 64, pp. 3780-3789. , CrossRefPubMed
Khodarev, N.N., Pitroda, S.P., Beckett, M.A., Macdermed, D.M., Huang, L., Kufe, D.W., Weichselbaum, R.R., MUC1-induced transcriptional programs associated with tumorigenesis predict outcome in breast and lung cancer (2009) Cancer Res, 69, pp. 2833-2837. , CrossRefPubMed
Karsten, U., Von Mensdorff-Pouilly, S., Goletz, S., What makes MUC1 a tumor antigen? (2005) Tumor Biol, 26, pp. 217-220. , CrossRefPubMed
Ferreira, C.S.M., Matthews, C.S., Missailidis, S., DNA aptamers that bind to MUC1 tumour marker: Design and characterization of MUC1-binding single-stranded DNA aptamers (2006) Tumor Biol, 27, pp. 289-301. , CrossRefPubMed
Nabavinia, M.S., Gholoobi, A., Charbgoo, F., Nabavinia, M., Ramezani, M., Abnous, K., Anti-MUC1 aptamer: A potential opportunity for cancer treatment (2017) Med. Res. Rev, 37, pp. 1518-1539. , CrossRefPubMed
Ferreira, C.S.M., Cheung, M.C., Missailidis, S., Bisland, S., Gariépy, J., Phototoxic aptamers selectively enter and kill epithelial cancer cells (2009) Nucleic Acids Res, 37, pp. 866-876. , CrossRefPubMed
Tan, L., Neoh, K.G., Kang, E.T., Choe, W.S., Su, X., PEGylated anti-MUC1 aptamer-doxorubicin complex for targeted drug delivery to MCF7 breast cancer cells. (2011) Macromol. Biosci, 11, pp. 1331-1335. , CrossRefPubMed
Yu, C., Hu, Y., Duan, J., Yuan, W., Wang, C., Xu, H., Yang, X., Da Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro (2011) Plos ONE, p. 6. , CrossRef
Hu, Y., Duan, J., Zhan, Q., Wang, F., Lu, X., Yang, X., Da Novel MUC1 aptamer selectively delivers cytotoxic agent to cancer cells in vitro (2012) Plos ONE, p. 7. , CrossRef
Ferrara, N., Davis-Smyth, T., The biology of vascular endothelial growth factor (1997) Endocr. Rev, 18, pp. 4-25. , CrossRefPubMed
Niu, G., Chen, X., Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy (2010) Curr. Drug Targets, 11, pp. 1000-1017. , CrossRefPubMed
Nonaka, Y., Yoshida, W., Abe, K., Ferri, S., Schulze, H., Bachmann, T.T., Ikebukuro, K., Affinity improvement of a VEGF aptamer by in silico maturation for a sensitive VEGF-detection system (2013) Anal. Chem, 85, pp. 1132-1137. , CrossRefPubMed
Nathan, C., Neutrophils and immunity: Challenges and opportunities (2006) Nat. Rev. Immunol, 6, pp. 173-182. , CrossRefPubMed
Burg, N.D., Pillinger, M.H., The Neutrophil: Function and regulation in innate and humoral immunity. (2001) Clin. Immunol, 99, pp. 7-17. , CrossRefPubMed
Sato, T., Takahashi, S., Mizumoto, T., Harao, M., Akizuki, M., Takasugi, M., Fukutomi, T., Yamashita, J., Neutrophil elastase and cancer (2006) Surg. Oncol, 15, pp. 217-222. , CrossRefPubMed
Ho, A.S., Chen, C.H., Cheng, C.C., Wang, C.C., Lin, H.C., Luo, T.Y., Lien, G.S., Chang, J., Neutrophil elastase as a diagnostic marker and therapeutic target in colorectal cancers (2014) Oncotarget, 5, pp. 473-480. , CrossRefPubMed
Charlton, J., Kirschenheuter, G.P., Smith, D., Highly potent irreversible inhibitors of neutrophil elastase generated by selection from a randomized DNA-valine phosphonate library (1997) Biochemistry, 36, pp. 3018-3026. , CrossRefPubMed
Shin, W.S., Maeng, Y.S., Jung, J.W., Min, J.K., Kwon, Y.G., Lee, S.T., Soluble PTK7 inhibits tube formation, migration, and invasion of endothelial cells and angiogenesis. (2008) Biochem. Biophys. Res. Commun, 371, pp. 793-798. , CrossRefPubMed
Prebet, T., Lhoumeau, A.C., Arnoulet, C., Aulas, A., Marchetto, S., Audebert, S., Puppo, F., Santoni, M.J., The cell polarity PTK7 receptor acts as a modulator of the chemotherapeutic response in acute myeloid leukemia and impairs clinical outcome (2010) Blood, 116, pp. 2315-2323. , CrossRefPubMed
Na, H.W., Shin, W.S., Ludwig, A., Lee, S.T., The cytosolic domain of protein-tyrosine kinase 7 (PTK7), generated from sequential cleavage by a disintegrin and metalloprotease 17 (ADAM17) and γ-secretase, enhances cell proliferation and migration in colon cancer cells (2012) J. Biol. Chem, 287, pp. 25001-25009. , CrossRefPubMed
Golubkov, V.S., Prigozhina, N.L., Zhang, Y., Stoletov, K., Lewis, J.D., Schwartz, P.E., Hoffman, R.M., Strongin, A.Y., Protein-tyrosine pseudokinase 7 (PTK7) directs cancer cell motility and metastasis (2014) J. Biol. Chem, 289, pp. 24238-24239. , CrossRefPubMed
Chen, G., Qi, S., Yang, X., Chen, W., Prognostic significance of PTK7 in human malignancies (2017) Histol. Histopathol, p. 11933. , CrossRef
Shangguan, D., Tang, Z., Mallikaratchy, P., Xiao, Z., Tan, W., (2007) Aptamers Selected by Cell-Selex for Theranostics, 8, pp. 603-606. , Tan, W., Fang, X., Eds.
Springer: Berlin, Germany
Shangguan, D., Cao, Z., Meng, L., Mallikaratchy, P., Sefah, K., Wang, H., Li, Y., Tan, W., Cell-specific aptamer probes for membrane protein elucidation in cancer cells (2008) J. Proteome Res, 7, pp. 2133-2139. , CrossRefPubMed
Dhar, S., Daniel, W.L., Giljohann, D.A., Mirkin, C.A., Lippard, S.J., Polyvalent oligonucleotide gold nanoparticle conjugates as delivery vehicles for platinum(IV) warheads (2009) J. Am. Chem. Soc, 131, pp. 14652-14653. , CrossRefPubMed
Perera, S., Uddin, M., Hayes, J.A., Salivary lysozyme: A noninvasive marker for the study of the effects of stress of natural immunity (1997) Int. J. Behav. Med, 4, pp. 170-178. , CrossRefPubMed
Sava, G., Benetti, A., Ceschia, V., Pacor, S., Lysozyme and cancer: Role of exogenous lysozyme as anticancer agent (review) (1989) Anticancer Res, 9, pp. 583-591. , PubMed
Vizoso, F., Plaza, E., Vazquez, J., Serra, C., Lamelas, M.L., Gonzalez, L.O., Merino, A.M., Mendez, J., Lysozyme expression by breast carcinomas, correlation with clinicopathologic parameters, and prognostic significance (2001) Ann. Surg. Oncol, 8, pp. 667-674. , CrossRefPubMed
Serra, C., Vizoso, F., Alonso, L., Rodriguez, J., Gonzalez, L., Fernandez, M., Lamelas, M., Baltasar, A., Expression and prognostic significance of lysozyme in male breast cancer (2002) Breast Cancer Res, 4. , CrossRefPubMed
Levinson, S.S., Elin, R.J., Yam, L., Light chain proteinuria and lysozymuria in a patient with acute monocytic leukemia (2002) Clin. Chem, 48, pp. 1131-1132. , PubMed
Tran, D.T., Janssen, K.P.F., Pollet, J., Lammertyn, E., Anné, J., Van Schepdael, A., Lammertyn, J., Selection and characterization of DNA aptamers for egg white lysozyme (2010) Molecules, 15, pp. 1127-1140. , CrossRefPubMed
Cox, J.C., Ellington, A.D., Automated selection of anti-protein aptamers (2001) Biorgan. Med. Chem, 9, pp. 2525-2531. , CrossRef
Teller, C., Shimron, S., Willner, I., Aptamer-DNAzyme hairpins for amplified biosensing. (2009) Anal. Chem, 81, pp. 9114-9119. , CrossRefPubMed
Garland, M., Yim, J.J., Bogyo, M.A., Bright future for precision medicine: Advances in fluorescent chemical probe design and their clinical application (2016) Cell Chem. Biol, 23, pp. 122-136. , CrossRefPubMed
Gao, M., Yu, F., Lv, C., Choo, J., Chen, L., Fluorescent chemical probes for accurate tumor diagnosis and targeting therapy (2017) Chem. Soc. Rev., 46, pp. 2237-2271. , CrossRefPubMed
Cibiel, A., Pestourie, C., Ducongé, F., In vivo uses of aptamers selected against cell surface biomarkers for therapy and molecular imaging (2012) Biochimie, 94, pp. 1595-1606. , CrossRefPubMed
Dougherty, C.A., Cai, W., Hong, H., Applications of aptamers in targeted imaging: State of the art (2015) Curr. Top. Med. Chem, 15, pp. 1138-1152. , CrossRefPubMed
Chen, X., Estevez, M.C., Zhu, Z., Huang, Y.F., Chen, Y., Wang, L., Tan, W., Using aptamer-conjugated fluorescence resonance energy transfer nanoparticles for multiplexed cancer cell monitoring. (2009) Anal. Chem, 81, pp. 7009-7014. , CrossRefPubMed
Lee, C.H., Rajendran, R., Jeong, M.-S., Ko, H.Y., Joo, J.Y., Cho, S., Chang, Y.W., Kim, S., Bioimaging of targeting cancers using aptamer-conjugated carbon nanodots (2013) Chem. Commun, 49, pp. 6543-6545. , CrossRefPubMed
Jie, G., Zhao, Y., Qin, Y., A fluorescent polymeric quantum dot/aptamer superstructure and its application for imaging cancer cells (2014) Chem. Asian J, 9, pp. 1261-1264. , CrossRefPubMed
Shi, H., Ye, X., He, X., Wang, K., Cui, W., He, D., Li, D., Jia, X., Au@Ag/Au nanoparticles assembled with activatable aptamer probes as smart “nano-doctors” for image-guided cancer thermotherapy (2014) Nanoscale, 6, pp. 8754-8761. , CrossRefPubMed
Shi, H., Tang, Z., Kim, Y., Nie, H., Huang, Y.F., He, X., Deng, K., Tan, W., In vivo fluorescence imaging of tumors using molecular aptamers generated by cell-SELEX (2010) Chem. Asian J, 5, pp. 2209-2213. , CrossRefPubMed
Shi, H., Cui, W., He, X., Guo, Q., Wang, K., Ye, X., Tang, J., Whole Cell-SELEX aptamers for highly specific fluorescence molecular imaging of carcinomas in vivo (2013) Plos ONE, p. 8. , CrossRefPubMed
Bates, P.J., Reyes-Reyes, E.M., Malik, M.T., Murphy, E.M., Toole, M.G.O., Trent, J.O., G-quadruplex oligonucleotide AS1411 as a cancer-targeting agent : Uses and mechanisms. (1861) BBA Gen. Subj, 2017, pp. 1414-1428. , CrossRefPubMed
Ai, J., Li, T., Li, B., Xu, Y., Li, D., Liu, Z., Wang, E., In situ labeling and imaging of cellular protein via a bi-functional anticancer aptamer and its fluorescent ligand (2012) Anal. Chim. Acta, 741, pp. 93-99. , CrossRefPubMed
Ai, J., Xu, Y., Lou, B., Li, D., Wang, E., Multifunctional AS1411-functionalized fluorescent gold nanoparticles for targeted cancer cell imaging and efficient photodynamic therapy (2014) Talanta, 118, pp. 54-60. , CrossRefPubMed
Shi, H., He, X., Wang, K., Wu, X., Ye, X., Guo, Q., Tan, W., Zhou, B., Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 3900-3905. , CrossRefPubMed
Yan, L., Shi, H., He, X., Wang, K., Tang, J., Chen, M., Ye, X., Lei, Y., A versatile activatable fluorescence probing platform for cancer cells in vitro and in vivo based on self-assembled aptamer/carbon nanotube ensembles (2014) Anal. Chem, 86, pp. 9271-9277. , CrossRefPubMed
Motaghi, H., Mehrgardi, M.A., Bouvet, P., Carbon dots-AS1411 aptamer nanoconjugate for ultrasensitive spectrofluorometric detection of cancer cells (2017) Sci. Rep, 7, p. 10513. , CrossRefPubMed
Yuan, B., Sun, Y., Guo, Q., Huang, J., Yang, X., Chen, Y., Wen, X., Wang, K., High signal-to-background ratio detection of cancer cells with activatable strategy based on target-induced self-assembly of split aptamers. (2017) Anal. Chem, 89, pp. 9347-9353. , CrossRefPubMed
Fluorescence sensing using DNA Aptamers in cancer research and clinical diagnostics