MAVEN: An Algorithm for Multi-Parametric Automated Segmentation of Brain Veins from Gradient Echo Acquisitions(220 views)(PDF public188 views) Monti S, Cocozza S, Borrelli P, Straub S, Ladd ME, Salvatore M, Tedeschi E, Palma G
Ieee T Med Imaging (ISSN: 0278-0062), 2017; 36(5): 1054-1065.
Keywords: Brain Veins, Mri, Segmentation, Vesselness, Automation, Image Segmentation, Magnetic Resonance Imaging, Neurodegenerative Diseases, Trees (mathematics), Algorithm Parameters, Automated Segmentation, Manual Segmentation, Neurodegenerative Disorders, Parametric Information, Quantitative And Qualitative Analysis, Traumatic Brain Injuries, Parameter Estimation, Adult, Article, False Positive Result, Female, Human, Human Experiment, Image Analysis, Multiparametric Magnetic Resonance Imaging, Neuroimaging, Normal Human, Quantitative Analysis, Reproducibility, Nuclear Magnetic Resonance Imaging, Cerebral Veins, Reproducibility Of Results,
Affiliations: *** IBB - CNR ***
IRCCS SDN, Naples, 80143, Italy
Department of Electronic, Information and Bioengineering, Politecnico di Milano, Milan, 20133, Italy
Department of Advanced Biomedical Sciences, University Federico II, Naples, 80131, Italy
Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, 69120, Germany
Institute of Biostructure and Bioimaging, National Research Council, Naples, 80145, Italy
Coutinho, J.M., Gerritsma, J.J., Zuurbier, S.M., Stam, J., Isolated cortical vein thrombosis: Systematic review of case reports and case series (2014) Stroke, 45 (6), pp. 1836-1838
Chen, S., Venous system in acute brain injury: Mechanisms of pathophysiological change and function (2015) Exp. Neurol., 272, pp. 4-10. , Oct
Toro, E.F., Brain venous haemodynamics, neurological diseases and mathematical modelling. A review (2016) Appl. Math. Comput., 272, pp. 542-579. , Jan
Beggs, C.B., Venous hemodynamics in neurological disorders: An analytical review with hydrodynamic analysis (2013) BMC Med., 11 (1), p. 142
Adams, C.W., Abdulla, Y.H., Torres, E.M., Poston, R.N., Periventricular lesions in multiple sclerosis: Their perivenous origin and relationship to granular ependymitis (1987) Neuropathol. Appl. Neurobiol., 13 (2), pp. 141-152
De Simone, R., Ranieri, A., Montella, S., Marchese, M., Bonavita, V., Sinus venous stenosis-associated idiopathic intracranial hypertension without papilledema as a powerful risk factor for progression and refractoriness of headache (2012) Current Pain Headache Rep., 16 (3), pp. 261-269. , Jun
Saposnik, G., Diagnosis and management of cerebral venous thrombosis: A statement for healthcare professionals from the American Heart Association/American stroke association (2011) Stroke, 48 (2), pp. 1158-1192
Tsai, F.Y., Kostanian, V., Rivera, M., Lee, K.-W., Chen, C.C., Nguyen, T.H., Cerebral venous congestion as indication for throm-bolytic treatment (2007) CardioVascular Intervent. Radiol., 30 (4), pp. 675-687. , Jul
Brown, W.R., Thore, C.R., Review: Cerebral microvascular pathology in ageing and neurodegeneration (2011) Neuropathol. Appl. Neurobiol., 37 (1), pp. 56-74. , Feb
Bateman, G., The pathophysiology of idiopathic normal pressure hydro-cephalus: Cerebral ischemia or altered venous hemodynamics? (2008) AJNR Amer. J. Neuroradiol., 29 (1), pp. 198-203
Yan, S., Increased visibility of deep medullary veins in leukoaraio-sis: A 3-T MRI study (2014) Front Aging Neurosci., 6, p. 144. , Sep
Moody, D.M., Brown, W.R., Challa, V.R., Anderson, R.L., Periventricular venous collagenosis: Association with leukoaraiosis (1995) Radiol., 194 (2), pp. 469-476
Kau, T., The 'central vein sign': Is there a place for susceptibility weighted imaging in possible multiple sclerosis? (2013) Eur. Radiol., 23 (7), pp. 1956-1962. , Jul
Gaitán, M.I., De Alwis, M.P., Sati, P., Nair, G., Reich, D.S., Multiple sclerosis shrinks intralesional, and enlarges extralesional, brain parenchymal veins (2013) Neurology, 80 (2), pp. 145-151
Zivadinov, R., Decreased brain venous vasculature visibility on susceptibility-weighted imaging venography in patients with multiple sclerosis is related to chronic cerebrospinal venous insufficiency (2011) BMC Neurol., 11 (1), p. 1
Arrigoni, F., Deep medullary vein involvement in neonates with brain damage: An MR imaging study (2011) AJNR Amer. J. Neuroradiol., 32 (11), pp. 2030-2036
Bériault, S., Sadikot, A.F., Alsubaie, F., Drouin, S., Collins, D.L., Pike, G.B., Neuronavigation using susceptibility-weighted venography: Application to deep brain stimulation and comparison with gadolinium contrast: Technical note (2014) J. Neurosurgery, 121 (1), pp. 131-141
Nowinski, W.L., Volkau, I., Marchenko, Y., Thirunavuukarasuu, A., Ng, T.T., Runge, V.M., A 3D model of human cerebrovasculature derived from 3T magnetic resonance angiography (2009) Neuroinformatics, 7 (1), pp. 23-36
Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G., A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes (2009) Med. Image Anal., 13 (6), pp. 819-845. , Aug
Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A., Multiscale vessel enhancement filtering (1998) Proc. MICCAI, pp. 130-137
Manniesing, R., Viergever, M.A., Niessen, W.J., Vessel enhancing diffusion: A scale space representation of vessel structures (2006) Med. Image Anal., 10 (6), pp. 815-825
Koopmans, P.J., Manniesing, R., Niessen, W.J., Viergever, M.A., Barth, M., MR venography of the human brain using susceptibility weighted imaging at very high field strength (2008) Magn. Reson. Mater. Phys., Biol. Med., 21 (1), pp. 149-158
Bériault, S., Archambault-Wallenburg, M., Sadikot, A.F., Collins, D.L., Pike, G.B., Automatic Markov random field segmentation of susceptibility-weighted MR venography (2014) Clinical Image-Based Procedures. Translational Research in Medical Imaging, pp. 39-47. , Cham, Switzerland: Springer
Monti, S., A multiparametric and multiscale approach to automated segmentation of brain veins (2015) Proc. 37th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Aug., pp. 3041-3044
Bériault, S., Xiao, Y., Collins, D.L., Pike, G.B., Automatic SWI venography segmentation using conditional random fields (2015) IEEE Trans. Med. Imag., 34 (12), pp. 2478-2491. , Dec
Xu, X., Segmentation of cerebral venous vessel in SWI based on multi-adaptive threshold with vessel enhancement and background effects elimination (2012) Proc. 6th Int. Conf. Internet Comput. Sci. Eng. (ICICSE), pp. 107-111. , Apr
Kuijf, H.J., Bouvy, W.H., Zwanenburg, J.J.M., Viergever, M.A., Biessels, G.J., Vincken, K.L., Automated detection of periven-tricular veins on 7 T brain MRI (2015) Proc. SPIE, 9413, p. 94132T
Kuijf, H.J., Quantification of deep medullary veins at 7 T brain MRI (2016) Eur. Radiol., 26 (10), pp. 3412-3418. , Oct
Monti, S., Automated multi-parametric segmentation of brain veins from GRE acquisition (2016) Proc. Int. Soc. Mag. Reson. Med., p. 1906
Smith, S.M., Fast robust automated brain extraction (2002) Human Brain Mapping, 17 (3), pp. 143-155
Cusack, R., Papadakis, N., New robust 3-D phase unwrapping algorithms: Application to magnetic field mapping and undistort-ing echoplanar images (2002) NeuroImage, 16 (3), pp. 754-764. , Jul
Schweser, F., Deistung, A., Lehr, B.W., Reichenbach, J.R., Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: An approach to in vivo brain iron metabolism? (2011) NeuroImage, 54 (4), pp. 2789-2807. , Feb
Li, W., A method for estimating and removing streaking arti-facts in quantitative susceptibility mapping (2015) NeuroImage, 108, pp. 111-122. , Mar
Dubuisson, M.-P., Jain, A.K., A modified Hausdorff distance for object matching (1994) Proc. 12th IAPR Int. Conf. Pattern Recognit. (ICPR), 1, pp. 566-568. , Oct
Lee, T.C., Kashyap, R.L., Chu, C.N., Building skeleton models via 3-D medial surface axis thinning algorithms (1994) CVGIP, Graph. Models Image Process., 56 (6), pp. 462-478
Kerschnitzki, M., Architecture of the osteocyte network correlates with bone material quality (2013) J. Bone Mineral Res., 28 (8), pp. 1837-1845
Haacke, E.M., Tang, J., Neelavalli, J., Cheng, Y.C.N., Susceptibility mapping as a means to visualize veins and quantify oxygen saturation (2010) J. Magn. Reson. Imag., 32 (3), pp. 663-676. , Sep
Xu, Y., Haacke, E.M., The role of voxel aspect ratio in determining apparent vascular phase behavior in susceptibility weighted imaging (2006) Magn. Reson. Imag., 24 (2), pp. 155-160. , Feb
Kudo, K., Oxygen extraction fraction measurement using quantitative susceptibility mapping: Comparison with positron emission tomography (2015) J. Cerebral Blood Flow Metabolism, 36 (8), p. 6713
Louveau, A., Structural and functional features of central nervous system lymphatic vessels (2015) Nature, 523 (7560), pp. 337-341
Müller, L.O., Toro, E.F., A global multiscale mathematical model for the human circulation with emphasis on the venous system (2014) Int. J. Numer. Methods Biomed. Eng., 30 (7), pp. 681-725. , Jul
Buades, A., Coll, B., Morel, J.-M., A review of image denoising algorithms, with a new one (2005) Multiscale Model. Simul., 4 (2), pp. 490-530
Borrelli, P., Palma, G., Comerci, M., Alfano, B., Unbiased noise estimation and denoising in parallel magnetic resonance imaging (2014) Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May, pp. 1230-1234
Borrelli, P., Improving signal-to-noise ratio in susceptibility weighted imaging: A novel multicomponent non-local approach (2015) PLoS ONE, 10 (6), p. e0126835
Palma, G., A novel multiparametric approach to 3D quantitative MRI of the brain (2015) PLoS ONE, 10 (8), p. e0134963
Palma, G., 3D non-local means denoising via multi-GPU (2013) Proc. Federated Conf. Comput. Sci. Inf. Syst. (FedCSIS), pp. 495-498. , Sep
MAVEN: An Algorithm for Multi-Parametric Automated Segmentation of Brain Veins from Gradient Echo Acquisitions