Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, Federico II University of Naples, Italy
References: Baumgartner, I., Therapeutic angiogenesis: theoretic problems using vascular endothelial growth factor (2000) Curr. Cardiol. Rep., 2, pp. 24-2
Hendel, R.C., Henry, T.D., Rocha-Singh, K., Isner, J.M., Kereiakes, D.J., Giordano, F.J., Simons, M., Bonow, R.O., Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: evidence for a dose-dependent effect (2000) Circulation, 101, pp. 118-121
Henry, T.D., Annex, B.H., McKendall, G.R., Azrin, M.A., Lopez, J.J., Giordano, F.J., Shah, P.K., McCluskey, E.R., VIVA Investigators, The VIVA trial: vascular endothelial growth factor in Ischemia for vascular angiogenesis (2003) Circulation, 107, pp. 1359-1365
Takeshita, S., Zheng, L.P., Brogi, E., Kearney, M., Pu, L.Q., Bunting, S., Ferrara, N., Isner, J.M., Therapeutic angiogenesis. a single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model (1994) J. Clin. Invest., 93, pp. 662-670
Ruiz de Almodovar, C., Lambrechts, D., Mazzone, M., Carmeliet, P., Role and therapeutic potential of VEGF in the nervous system (2009) Physiol. Rev., 89, pp. 607-648
Lange, C., Storkebaum, E., de Almodóvar, C.R., Dewerchin, M., Carmeliet, P., Vascular endothelial growth factor: a neurovascular target in neurological diseases (2016) Nat. Rev. Neurol., 12, pp. 439-454
Houck, K.A., Leung, D.W., Rowland, A.M., Winer, J., Ferrara, N., Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms (1992) J. Biol. Chem., 267, pp. 26031-26037
Park, J.E., Keller, G.A., Ferrara, N., The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF (1993) Mol. Biol. Cell., 4, pp. 1317-1326
Ortéga, N., L'Faqihi, F.E., Plouët, J., Control of vascular endothelial growth factor angiogenic activity by the extracellular matrix (1998) Biol. Cell., 90, pp. 381-390
Amin, E.M., Oltean, S., Hua, J., Gammons, M.V., Hamdollah-Zadeh, M., Welsh, G.I., Cheung, M.K., Ladomery, M.R., WT1 mutants reveal SRPK1 to be a downstream angiogenesis target by altering VEGF splicing (2011) Cancer Cell., 20, pp. 768-780
Eswarappa, S.M., Potdar, A.A., Koch, W.J., Fan, Y., Vasu, K., Lindner, D., Willard, B., Fox, P.L., Programmed translational readthrough generates antiangiogenic VEGF-Ax (2014) Cell, 157, pp. 1605-1618
Harris, S., Craze, M., Newton, J., Fisher, M., Shima, D.T., Tozer, G.M., Kanthou, C., Do anti-angiogenic VEGF (VEGFxxxb) isoforms exist? A cautionary tale (2012) PLoS One, 7, p. e35231
Xin, H., Zhong, C., Nudleman, E., Ferrara, N., Evidence for Pro-angiogenic Functions of VEGF-Ax (2016) Cell, 167, pp. 275-284
Muller, Y.A., Li, B., Christinger, H.W., Wells, J.A., Cunningham, B.C., de Vos, A.M., Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site (1997) Proc. Natl. Acad. Sci. USA, 94, pp. 7192-7197
Muller, Y.A., Christinger, H.W., Keyt, B.A., de Vos, A.M., The crystal structure of vascular endothelial growth factor (VEGF) refined to 1.93 Å resolution: multiple copy flexibility and receptor binding (1997) Structure, 5, pp. 1325-1338
Ferrara, N., Gerber, H.P., LeCouter, J., The biology of VEGF and its receptors (2003) Nat. Med., 9, pp. 669-676
Cao, Y., Positive and negative modulation of angiogenesis by VEGFR1 ligands.Sci (2009) Signal, 2. , (re1)
Cross, M.J., Dixelius, J., Matsumoto, T., Claesson-Welsh, L., VEGF-receptor signal transduction (2003) Trends Biochem. Sci., 28, pp. 488-494
Shibuya, M., Claesson-Welsh, L., Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis (2006) Exp. Cell. Res., 312, pp. 549-560
Olsson, A.K., Dimberg, A., Kreuger, J., Claesson-Welsh, L., VEGF receptor signalling in control of vascular function (2006) Nat. Rev. Mol. Cell. Biol., 7, pp. 359-371
Gélinas, D.S., Bernatchez, P.N., Rollin, S., Bazan, N.G., Sirois, M.G., Immediate and delayed VEGF-mediated NO synthesis in endothelial cells: role of PI3K, PKC and PLC pathways (2002) Br. J. Pharmacol., 137, pp. 1021-1030
Rosenstein, J.M., Krum, J.M., Ruhrberg, C., VEGF in the nervous system (2010) Organogenesis, 6, pp. 107-114
Jin, K., Zhu, Y., Sun, Y., Mao, X.O., Xie, L., Greenberg, D.A., Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo (2002) Proc. Natl. Acad. Sci. USA, 99, pp. 11946-11950
Licht, T., Keshet, E., Delineating multiple functions of VEGF-A in the adult brain (2013) Cell. Mol. Life Sci., 70, pp. 1727-1737
Carmeliet, P., Ruiz de Almodovar, C., VEGF ligands and receptors: implications in neurodevelopment and neurodegeneration (2013) Cell. Mol. Life Sci., 70, pp. 1763-1778
Jin, K., Mao, X.O., Batteur, S.P., McEachron, E., Leahy, A., Greenberg, D.A., Caspase-3 and the regulation of hypoxic neuronal death by vascular endothelial growth factor (2001) Neuroscience, 108, pp. 351-358
Jin, K.L., Mao, X.O., Greenberg, D.A., Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 10242-10247
Matsuzaki, H., Tamatani, M., Yamaguchi, A., Namikawa, K., Kiyama, H., Vitek, M.P., Mitsuda, N., Tohyama, M., Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: signal transduction cascades (2001) FASEB J., 15, pp. 1218-1220
Svensson, B., Peters, M., König, H.G., Poppe, M., Levkau, B., Rothermundt, M., Arolt, V., Prehn, J.H., Vascular endothelial growth factor protects cultured rat hippocampal neurons against hypoxic injury via an antiexcitotoxic, caspase-independent mechanism (2002) J. Cereb. Blood Flow. Metab., 22, pp. 1170-1175
Gerber, H.P., McMurtrey, A., Kowalski, J., Yan, M., Keyt, B.A., Dixit, V., Ferrara, N., Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation (1998) J. Biol. Chem., 273, pp. 30336-30343
Yu, S., Liu, Y.P., Liu, Y.H., Jiao, S.S., Liu, L., Wang, Y.J., Fu, W.L., Diagnostic utility of VEGF and soluble CD40L levels in serum of Alzheimer's patients (2016) Clin. Chim. Acta, 453, pp. 154-159
Yu, S.P., Farhangrazi, Z.S., Ying, H.S., Yeh, C.H., Choi, D.W., Enhancement of outward potassium current may participate in beta-amyloid peptide-induced cortical neuronal death (1998) Neurobiol. Dis., 5, pp. 81-88
Qiu, M.H., Zhang, R., Sun, F.Y., Enhancement of ischemia-induced tyrosine phosphorylation of Kv1.2 by vascular endothelial growth factor via activation of phosphatidylinositol 3-kinase (2003) J. Neurochem., 87, pp. 1509-1517
Huang, X.Y., Morielli, A.D., Peralta, E.G., Tyrosine kinase-dependent suppression of a potassium channel by the G protein-coupled m1 muscarinic acetylcholine receptor (1993) Cell, 75, pp. 1145-1156
Wu, K.W., Yang, P., Li, S.S., Liu, C.W., Sun, F.Y., VEGF attenuated increase of outward delayed-rectifier potassium currents in hippocampal neurons induced by focal ischemia via PI3-K pathway (2015) Neuroscience, 298, pp. 94-101
Ma, Y.Y., Li, K.Y., Wang, J.J., Huang, Y.L., Huang, Y., Sun, F.Y., Vascular endothelial growth factor acutely reduces calcium influx via inhibition of the Ca2+ channels in rat hippocampal neurons (2009) J. Neurosci. Res., 87, pp. 393-402
Kim, B.W., Choi, M., Kim, Y.S., Park, H., Lee, H.R., Yun, C.O., Kim, E.J., Son, H., Vascular endothelial growth factor (VEGF) signaling regulates hippocampal neurons by elevation of intracellular calcium and activation of calcium/calmodulin protein kinase II and mammalian target of rapamycin (2008) Cell. Signal, 20, pp. 714-725
Sun, G.C., Ma, Y.Y., Vascular endothelial growth factor modulates voltage-gated Na+channel properties and depresses action potential firing in cultured rat hippocampal neurons (2013) Biol. Pharm. Bull., 36, pp. 548-555
Palmer, T.D., Willhoite, A.R., Gage, F.H., Vascular niche for adult hippocampal neurogenesis (2000) J. Comp. Neurol., 425, pp. 479-494
Ward, N.L., Lamanna, J.C., The neurovascular unit and its growth factors: coordinated response in the vascular and nervous systems (2004) Neurol. Res., 26, pp. 870-883
Font, M.A., Arboix, A., Krupinski, J., Angiogenesis, neurogenesis and neuroplasticity in ischemic stroke (2010) Curr. Cardiol. Rev., 6, pp. 238-244
Greenberg, D.A., Jin, K., Vascular endothelial growth factors (VEGFs) and stroke (2013) Cell. Mol. Life Sci., 70, pp. 1753-1761
Madri, J.A., Modeling the neurovascular niche: implications for recovery from CNS injury (2009) J. Physiol. Pharmacol., 60, pp. 95-104
Ohab, J.J., Fleming, S., Blesch, A., Carmichael, S.T., A neurovascular niche for neurogenesis after stroke (2006) J. Neurosci., 26, pp. 13007-13016
Zhang, R.L., Chopp, M., Roberts, C., Liu, X., Wei, M., Nejad-Davarani, S.P., Wang, X., Zhang, Z.G., Stroke increases neural stem cells and angiogenesis in the neurogenic niche of the adult mouse (2014) PLoS One, 9, p. e113972
Brumm, A.J., Carmichael, S.T., Not just a rush of blood to the head (2012) Nat. Med., 18, pp. 1609-1610
Muramatsu, R., Takahashi, C., Miyake, S., Fujimura, H., Mochizuki, H., Yamashita, T., Angiogenesis induced by CNS inflammation promotes neuronal remodeling through vessel-derived prostacyclin (2012) Nat. Med., 18, pp. 1658-1664
Hermann, D.M., Zechariah, A., Implications of vascular endothelial growth factor for postischemic neurovascular remodeling (2009) J. Cereb. Blood Flow. Metab., 29, pp. 1620-1643
Ma, Y., Zechariah, A., Qu, Y., Hermann, D.M., Effects of vascular endothelial growth factor in ischemic stroke (2012) J. Neurosci. Res., 90, pp. 1873-1882
Schmidt, N.O., Przylecki, W., Yang, W., Ziu, M., Teng, Y., Kim, S.U., Black, P.M., Carroll, R.S., Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor (2005) Neoplasia, 7, pp. 623-629
Schmidt, N.O., Koeder, D., Messing, M., Mueller, F.J., Aboody, K.S., Kim, S.U., Black, P.M., Lamszus, K., Vascular endothelial growth factor-stimulated cerebral microvascular endothelial cells mediate the recruitment of neural stem cells to the neurovascular niche (2009) Brain Res., 1268, pp. 24-37
LaManna, J.C., Kuo, N.T., Lust, W.D., Hypoxia-induced brain angiogenesis. Signals and consequences (1998) Adv. Exp. Med. Biol., 454, pp. 287-293
Marti, H.J., Bernaudin, M., Bellail, A., Schoch, H., Euler, M., Petit, E., Risau, W., Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia (2000) Am. J. Pathol., 156, pp. 965-976
Szade, A., Grochot-Przeczek, A., Florczyk, U., Jozkowicz, A., Dulak, J., Cellular and molecular mechanisms of inflammation-induced angiogenesis (2015) IUBMB Life, 67, pp. 145-159
Caruana, M., Cauchi, R., Vassallo, N., Putative Role of Red Wine Polyphenols against Brain Pathology in Alzheimer's and Parkinson's Disease (2016) Front. Nutr., 3, p. 31
Mandel, S.A., Weinreb, O., Amit, T., Youdim, M.B., Molecular mechanisms of the neuroprotective/neurorescue action of multi-target green tea polyphenols (2012), pp. 4581-598. , Front. Biosci. (Schol Ed)
Pérez-Hernández, J., Zaldívar-Machorro, V.J., Villanueva-Porras, D., Vega-Ávila, E., Chavarría, A., A Potential alternative against neurodegenerative diseases: phytodrugs (2016) Oxid. Med. Cell Longev., 2016, p. 8378613
Ajami, M., Pazoki-Toroudi, H., Amani, H., Nabavi, S.F., Braidy, N., Vacca, R.A., Atanasov, A.G., Nabavi, S.M., Therapeutic role of sirtuins in neurodegenerative disease and their modulation by polyphenols (2016) Neurosci. Biobehav. Rev., , (Epub ahead of print)
Donà, M., Dell'Aica, I., Calabrese, F., Benelli, R., Morini, M., Albini, A., Garbisa, S., Neutrophil restraint by green tea: inhibition of inflammation, associated angiogenesis, and pulmonary fibrosis (2003) J. Immunol., 170, pp. 4335-4341
Malhotra, S., Tavakkoli, M., Edraki, N., Miri, R., Sharma, S.K., Prasad, A.K., Saso, L., Firuzi, O., Neuroprotective and antioxidant activities of 4-methylcoumarins: development of structure-activity relationships (2016) Biol. Pharm. Bull., 39, pp. 1544-1548
Lapi, D., Vagnani, S., Pignataro, G., Esposito, E., Paterni, M., Colantuoni, A., Protective Effects of Quercetin on Rat Pial Microvascular Changes during Transient Bilateral Common Carotid Artery Occlusion and Reperfusion (2012) Front. Physiol., 3, p. 32
Albini, A., Tosetti, F., Li, V.W., Noonan, D.M., Li, W.W., Cancer prevention by targeting angiogenesis (2012) Nat. Rev. Clin. Oncol., 9, pp. 498-509
Benelli, R., Venè, R., Bisacchi, D., Garbisa, S., Albini, A., Anti-invasive effects of green tea polyphenol epigallocatechin-3-gallate (EGCG), a natural inhibitor of metallo and serine proteases (2002) Biol. Chem., 383, pp. 101-105
Fernando, W., Rupasinghe, H.P., Hoskin, D.W., Regulation of hypoxia-inducible factor-1α and vascular endothelial growth factor signaling by plant flavonoids (2015) Mini Rev. Med. Chem., 15, pp. 479-489
Fu, B., Xue, J., Li, Z., Shi, X., Jiang, B.H., Fang, J., Chrysin inhibits expression of hypoxia-inducible factor-1alpha through reducing hypoxia-inducible factor-1alpha stability and inhibiting its protein synthesis (2007) Mol. Cancer Ther., 6, pp. 220-226
Gallo, C., Dallaglio, K., Bassani, B., Rossi, T., Rossello, A., Noonan, D.M., D'Uva, G., Albini, A., Hop derived flavonoid xanthohumol inhibits endothelial cell functions via AMPK activation (2016) Oncotarget, , (Epub ahead of print)
García-Maceira, P., Mateo, J., Silibinin inhibits hypoxia-inducible factor−1alpha and mTOR/p70S6K/4E-BP1 signalling pathway in human cervical and hepatoma cancer cells: implications for anticancer therapy (2009) Oncogene, 28, pp. 313-324
Jeon, H., Kim, H., Choi, D., Kim, D., Park, S.Y., Kim, Y.J., Kim, Y.M., Jung, Y., Quercetin activates an angiogenic pathway, hypoxia inducible factor (HIF)-1-vascular endothelial growth factor, by inhibiting HIF-prolyl hydroxylase: a structural analysis of quercetin for inhibiting HIF-prolyl hydroxylase (2007) Mol. Pharmacol., 71, pp. 1676-1684
Zhou, Y.D., Kim, Y.P., Li, X.C., Baerson, S.R., Agarwal, A.K., Hodges, T.W., Ferreira, D., Nagle, D.G., Hypoxia-inducible factor-1 activation by (-)-epicatechin gallate: potential adverse effects of cancer chemoprevention with high-dose green tea extracts (2004) J. Nat. Prod., 67, pp. 2063-2069
Thomas, R., Kim, M.H., Epigallocatechin gallate inhibits HIF-1a degradation in prostate cancer cells (2005) Biochem. Biophys. Res. Commun., 334, pp. 543-548
Amoroso, S., Gioielli, A., Cataldi, M., Di Renzo, G., Annunziato, L., In the neuronal cell line SH-SY5Y, oxidative stress-induced free radical overproduction causes cell death without any participation of intracellular Ca2+ increase (1999) Biochim. Biophys. Acta, 1452, pp. 151-160
Annunziato, L., Pannaccione, A., Cataldi, M., Secondo, A., Castaldo, P., Renzo, G.D., Taglialatela, M., Modulation of ion channels by reactive oxygen and nitrogen species: a pathophysiological role in brain aging? (2002) Neurobiol. Aging, 23, pp. 819-834
Annunziato, L., Cataldi, M., Pignataro, G., Secondo, A., Molinaro, P., Glutamate-independent calcium toxicity: introduction (2007) Stroke, 38 (2), pp. S661-S664
Zacchigna, S., Lambrechts, D., Carmeliet, P., Neurovascular signalling defects in neurodegeneration (2008) Nat. Rev. Neurosci., 9, pp. 169-181
Hansen, T.M., Moss, A.J., Brindle, N.P., Vascular endothelial growth factor and angiopoietins in neurovascular regeneration and protection following stroke (2008) Curr. Neurovasc. Res., 5, pp. 236-245
Nowacka, M.M., Obuchowicz, E., Vascular endothelial growth factor (VEGF) and its role in the central nervous system: a new element in the neurotrophic hypothesis of antidepressant drug action (2012) Neuropeptides, 46, pp. 1-10
Zachary, I., Neuroprotective role of vascular endothelial growth factor: signalling mechanisms, biological function, and therapeutic potential (2005) Neurosignals, 14, pp. 207-221
Beck, H., Plate, K.H., Angiogenesis after cerebral ischemia (2009) Acta Neuropathol., 117, pp. 481-496
Kovács, Z., Ikezaki, K., Samoto, K., Inamura, T., Fukui, M., VEGF and flt (1996) Expr. Time Kinet. Rat. brain Infarct. Stroke, 27, pp. 1865-1872
Hayashi, T., Abe, K., Suzuki, H., Itoyama, Y., Rapid induction of vascular endothelial growth factor gene expression after transient middle cerebral artery occlusion in rats (1997) Stroke, 28, pp. 2039-2044
Lee, M.Y., Ju, W.K., Cha, J.H., Son, B.C., Chun, M.H., Kang, J.K., Park, C.K., Expression of vascular endothelial growth factor mRNA following transient forebrain ischemia in rats (1999) Neurosci. Lett., 265, pp. 107-110
Hai, J., Li, S.T., Lin, Q., Pan, Q.G., Gao, F., Ding, M.X., Vascular endothelial growth factor expression and angiogenesis induced by chronic cerebral hypoperfusion in rat brain (2003) Neurosurgery, 53, pp. 963-970
Yang, J., Yao, Y., Chen, T., Zhang, T., VEGF ameliorates cognitive impairment in vivo and in vitro ischemia via improving neuronal viability and function (2014) Neuromol. Med., 16, pp. 376-388
Yang, Z.J., Bao, W.L., Qiu, M.H., Zhang, L.M., Lu, S.D., Huang, Y.L., Sun, F.Y., Role of vascular endothelial growth factor in neuronal DNA damage and repair in rat brain following a transient cerebral ischemia (2002) J. Neurosci. Res., 70, pp. 140-149
Bao, W.L., Lu, S.D., Wang, H., Sun, F.Y., Intraventricular vascular endothelial growth factor antibody increases infarct volume following transient cerebral ischemia (1999) Zhongguo Yao Li Xue Bao, 20, pp. 313-318
Shimotake, J., Derugin, N., Wendland, M., Vexler, Z.S., Ferriero, D.M., Vascular endothelial growth factor receptor-2 inhibition promotes cell death and limits endothelial cell proliferation in a neonatal rodent model of stroke (2010) Stroke, 41, pp. 343-349
Whitaker, V.R., Cui, L., Miller, S., Yu, S.P., Wei, L., Whisker stimulation enhances angiogenesis in the barrel cortex following focal ischemia in mice (2007) J. Cereb. Blood Flow. Metab., 27, pp. 57-68
Li, W.L., Fraser, J.L., Yu, S.P., Zhu, J., Jiang, Y.J., Wei, L., The role of VEGF/VEGFR2 signaling in peripheral stimulation-induced cerebral neurovascular regeneration after ischemic stroke in mice (2011) Exp. Brain Res., 214, pp. 503-513
Qiu, S., Wu, T., Wang, P., Li, J., Li, Q., Du, J., The association between VEGFR gene polymorphisms and stroke: a meta-analysis (2016) PLoS One, 11, p. e0151371
Wu, T., Qiu, S., Wang, P., Li, J., Li, Q., Du, J., The association between vascular endothelial growth factor gene polymorphisms and stroke: a meta-analysis (2016) Brain Behav., 6, p. e00482
Zhang, Z.G., Zhang, L., Jiang, Q., Zhang, R., Davies, K., Powers, C., Bruggen, N.V., Chopp, M., VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain (2000) J. Clin. Invest., 106, pp. 829-838
Sun, Y., Jin, K., Xie, L., Childs, J., Mao, X.O., Logvinova, A., Greenberg, D.A., VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia (2003) J. Clin. Invest., 111, pp. 1843-1851
Harrigan, M., Ennis, S., Masada, T., Keep, R., Intraventricular infusion of vascular endothelial growth factor promotes cerebral angiogenesis with minimal brain edema (2002) Neurosurgery, 50, pp. 589-598
Harrigan, M.R., Ennis, S.R., Sullivan, S.E., Keep, R.F., Effects of intraventricular infusion of vascular endothelial growth factor on cerebral blood flow, edema, and infarct volume (2003) Acta Neurochir. (Wien.)., 145, pp. 49-53
Manoonkitiwongsa, P.S., Schultz, R.L., McCreery, D.B., Whitter, E.F., Lyden, P.D., Neuroprotection of ischemic brain by vascular endothelial growth factor is critically dependent on proper dosage and may be compromised by angiogenesis (2004) J. Cereb. Blood Flow. Metab., 24, pp. 693-702
Oosthuyse, B., Moons, L., Storkebaum, E., Beck, H., Nuyens, D., Brusselmans, K., Van Dorpe, J., Carmeliet, P., Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration (2001) Nat. Genet., 28, pp. 131-138
Green, S.L., Tolwani, R.J., Animal models for motor neuron disease (1999) Lab. Anim. Sci., 49, pp. 480-487
Lambrechts, D., Storkebaum, E., Morimoto, M., Del-Favero, J., Desmet, F., Marklund, S.L., Wyns, S., Carmeliet, P., VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death (2003) Nat. Genet., 34, pp. 383-394
Lunn, J.S., Sakowski, S.A., Kim, B., Rosenberg, A.A., Feldman, E.L., Vascular endothelial growth factor prevents G93A-SOD1-induced motor neuron degeneration (2009) Dev. Neurobiol., 69, pp. 871-884
Miyazaki, K., Masamoto, K., Morimoto, N., Kurata, T., Mimoto, T., Obata, T., Kanno, I., Abe, K., Early and progressive impairment of spinal blood flow-glucose metabolism coupling in motor neuron degeneration of ALS model mice (2011) J. Cereb. Blood Flow Metab., 32, pp. 456-467
Sato, K., Morimoto, N., Kurata, T., Mimoto, T., Miyazaki, K., Ikeda, Y., Abe, K., Impaired response of hypoxic sensor protein HIF-1α and its downstream proteins in the spinal motor neurons of ALS model mice (2012) Brain Res., 1473, pp. 55-62
Li, X., Lu, L., Bush, D.J., Zhang, X., Zheng, L., Suswam, E.A., King, P.H., Mutant copper-zinc superoxide dismutase associated with amyotrophic lateral sclerosis binds to adenine/uridine-rich stability elements in the vascular endothelial growth factor 3'-untranslated region (2009) J. Neurochem., 108, pp. 1032-1044
Lu, L., Zheng, L., Viera, L., Suswam, E., Li, Y., Li, X., Estévez, A.G., King, P.H., Mutant Cu/Zn-superoxide dismutase associated with amyotrophic lateral sclerosis destabilizes vascular endothelial growth factor mRNA and downregulates its expression (2007) J. Neurosci., 27, pp. 7929-7938
Vijayalakshmi, K., Ostwal, P., Sumitha, R., Shruthi, S., Varghese, A.M., Mishra, P., Manohari, S.G., Alladi, P.A., Role of VEGF and VEGFR2 Receptor in Reversal of ALS-CSF Induced Degeneration of NSC-34 Motor Neuron Cell Line (2015) Mol. Neurobiol., 51, pp. 995-1007
Storkebaum, E., Lambrechts, D., Dewerchin, M., Moreno-Murciano, M.P., Appelmans, S., Oh, H., Van Damme, P., Carmeliet, P., Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS (2005) Nat. Neurosci., 8, pp. 85-92
Azzouz, M., Ralph, G.S., Storkebaum, E., Walmsley, L.E., Mitrophanous, K.A., Kingsman, S.M., Carmeliet, P., Mazarakis, N.D., VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model (2004) Nature, 429, pp. 413-417
Bogaert, E., Van Damme, P., Poesen, K., Dhondt, J., Hersmus, N., Kiraly, D., Scheveneels, W., Van Den Bosch, L., VEGF protects motor neurons against excitotoxicity by upregulation of GluR2 (2010) Neurobiol. Aging, 31, pp. 2185-2191
Bridges, R.J., Stevens, D.R., Kahle, J.S., Nunn, P.B., Kadri, M., Cotman, C.W., Structure-function studies on N-oxalyl-diamino-dicarboxylic acids and excitatory amino acid receptors: evidence that beta-L-ODAP is a selective non-NMDA agonist (1989) J. Neurosci., 9, pp. 2073-2079
Chase, R.A., Pearson, S., Nunn, P.B., Lantos, P.L., Comparative toxicities of alpha- and beta-N-oxalyl-L-alpha, beta-diaminopropionic acids to rat spinal cord (1985) Neurosci. Lett., 55, pp. 89-94
Spencer, P.S., Roy, D.N., Ludolph, A., Hugon, J., Dwivedi, M.P., Schaumburg, H.H., Lathyrism: evidence for role of the neuroexcitatory aminoacid BOAA (1986) Lancet, 2-8515, pp. 1066-1067
Hugon, J., Ludolph, A., Roy, D.N., Schaumburg, H.H., Spencer, P.S., Studies on the etiology and pathogenesis of motor neuron diseases. II. Clinical and electrophysiologic features of pyramidal dysfunction in macaques fed Lathyrus sativus and IDPN (1988) Neurology, 38, pp. 435-442
Devos, D., Moreau, C., Lassalle, P., Perez, T., De Seze, J., Brunaud-Danel, V., Destée, A., Just, N., Low levels of the vascular endothelial growth factor in CSF from early ALS patients (2004) Neurology, 62, pp. 2127-2129
Canosa, A., Calvo, A., Barberis, M., Brunetti, M., Restagno, G., Cammarosano, S., Ilardi, A., Moglia, C., Amyotrophic lateral sclerosis onset after prolonged treatment with a VEGF receptors inhibitor (2015) Amyotroph. Lateral Scler. Front. Degener., 16, pp. 129-130
Lambrechts, D., Poesen, K., Fernández-Santiago, R., Al-Chalabi, A., Del Bo, R., Van, P.W., Vught, S., Carmeliet, P., Meta-analysis of vascular endothelial growth factor variations in amyotrophic lateral sclerosis: increased susceptibility in male carriers of the −2578AA genotype (2009) J. Med. Genet., 46, pp. 840-846
Chen, D., Shen, L., Wang, L., Lu, A., Zhang, H., Zhang, X., Zhang, Y., Zhang, J., Association of polymorphisms in vascular endothelial growth factor gene with the age of onset of amyotrophic lateral sclerosis (2007) Amyotroph. Lateral Scler., 8, pp. 144-149
Chen, W., Saeed, M., Mao, H., Siddique, N., Dellefave, L., Hung, W.Y., Deng, H.X., Siddique, T., Lack of association of VEGF promoter polymorphisms with sporadic ALS (2006) Neurology, 67, pp. 508-510
Del, R., Scarlato, B.M., Ghezzi, S., Martinelli-Boneschi, F., Corti, S., Locatelli, F., Santoro, D., Comi, G.P., Absence of angiogenic genes modification in Italian ALS patients (2008) Neurobiol. Aging, 29, pp. 314-316
Gros-Louis, F., Laurent, S., Lopes, A.A., Khoris, J., Meininger, V., Camu, W., Rouleau, G.A., Absence of mutations in the hypoxia response element of VEGF in ALS (2003) Muscle Nerve, 28, pp. 774-775
Van Vught, P.W., Sutedja, N.A., Veldink, J.H., Koeleman, B.P., Groeneveld, G.J., Wijmenga, C., Uitdehaag, B.M., Van den Berg, L.H., Lack of association between VEGF polymorphisms and ALS in a Dutch population (2005) Neurology, 65, pp. 1643-1645
Zhang, Y., Zhang, H., Fu, Y., Song, H., Wang, L., Zhang, J., Fan, D., VEGF C2578A polymorphism does not contribute to amyotrophic lateral sclerosis susceptibility in sporadic Chinese patients (2006) Amyotroph. Lateral Scler., 7, pp. 119-122
Brockington, A., Wokke, B., Nixon, H., Hartley, J., Shaw, P.J., Screening of the transcriptional regulatory regions of vascular endothelial growth factor receptor 2 (VEGFR2) in amyotrophic lateral sclerosis (2007) BMC Med. Genet., 8, p. 23
Cataldi, M., The changing landscape of voltage-gated calcium channels in neurovascular disorders and in neurodegenerative diseases (2013) Curr. Neuropharmacol., 11, pp. 276-297
Kalaria, R.N., Small vessel disease and Alzheimer's dementia: pathological considerations (2002) Cerebrovasc. Dis., 13, pp. S48-S52
Meyer, E.P., Ulmann-Schuler, A., Staufenbiel, M., Krucker, T., Altered morphology and 3D architecture of brain vasculature in a mouse model for Alzheimer's disease (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 3587-3592
Bozzao, A., Floris, R., Baviera, M.E., Apruzzese, A., Simonetti, G., Diffusion and perfusion MR imaging in cases of Alzheimer's disease: correlations with cortical atrophy and lesion load (2001) AJNR Am. J. Neuroradiol., 22, pp. 1030-1036
Matsuda, H., Cerebral blood flow and metabolic abnormalities in Alzheimer's disease (2001) Ann. Nucl. Med., 15, pp. 85-92
Ellis, R.J., Olichney, J.M., Thal, L.J., Mirra, S.S., Morris, J.C., Beekly, D., Heyman, A., Cerebral amyloid angiopathy in the brains of patients with Alzheimer's disease: the CERAD experience, Part XV (1996) Neurology, 46, pp. 1592-1596
Esiri, M.M., Wilcock, G.K., Cerebral amyloid angiopathy in dementia and old age (1986) J. Neurol. Neurosurg. Psychiatry, 49, pp. 1221-1226
Love, S., Miners, J.S., Cerebral hypoperfusion and the energy deficit in Alzheimer's disease (2016) Brain Pathol., 26, pp. 607-617
Tarkowski, E., Issa, R., Sjögren, M., Wallin, A., Blennow, K., Tarkowski, A., Kumar, P., Increased intrathecal levels of the angiogenic factors VEGF and TGF-beta in Alzheimer's disease and vascular dementia (2002) Neurobiol. Aging, 23, pp. 237-243
Thirumangalakudi, L., Samany, P.G., Owoso, A., Wiskar, B., Grammas, P., Angiogenic proteins are expressed by brain blood vessels in Alzheimer's disease (2006) J. Alzheimers Dis., 10, pp. 111-118
Barker, R., Ashby, E.L., Wellington, D., Barrow, V.M., Palmer, J.C., Kehoe, P.G., Esiri, M.M., Love, S., Pathophysiology of white matter perfusion in Alzheimer's disease and vascular dementia (2014) Brain, 137, pp. 1524-1532
Provias, J., Jeynes, B., Reduction in vascular endothelial growth factor expression in the superior temporal, hippocampal, and brainstem regions in Alzheimer's disease (2014) Curr. Neurovasc. Res., 11, pp. 202-209
Mateo, I., Llorca, J., Infante, J., Rodríguez-Rodríguez, E., Fernández-Viadero, C., Peña, N., Berciano, J., Combarros, O., Low serum VEGF levels are associated with Alzheimer's disease (2007) Acta Neurol. Scand., 116, pp. 56-58
Craig-Schapiro, R., Kuhn, M., Xiong, C., Pickering, E.H., Liu, J., Misko, T.P., Perrin, R.J., DM, H., Multiplexed immunoassay panel identifies novel CSF biomarkers for Alzheimer's disease diagnosis and prognosis (2011) PLoS One, 6, p. e18850
Leung, Y.Y., Toledo, J.B., Nefedov, A., Polikar, R., Raghavan, N., Xie, S.X., Farnum, M., Wang, L.S., Identifying amyloid pathology-related cerebrospinal fluid biomarkers for Alzheimer's disease in a multicohort study (2015) Alzheimers Dement. (Amst.)., 1, pp. 339-348
Hohman, T.J., Bell, S.P., Jefferson, A.L., Alzheimer's disease neuroimaging initiative. The role of vascular endothelial growth factor in neurodegeneration and cognitive decline: exploring interactions with biomarkers of Alzheimer disease (2015) JAMA Neurol., 72, pp. 520-529
Chapuis, J., Tian, J., Shi, J., Bensemain, F., Cottel, D., Lendon, C., Amouyel, P., Lambert, J.C., Association study of the vascular endothelial growth factor gene with the risk of developing Alzheimer's disease (2006) Neurobiol. Aging, 27, pp. 1212-1215
Del Bo, R., Scarlato, M., Ghezzi, S., Martinelli Boneschi, F., Fenoglio, C., Galbiati, S., Virgilio, R., Comi, G.P., Vascular endothelial growth factor gene variability is associated with increased risk for AD (2005) Ann. Neurol., 57, pp. 373-380
Landgren, S., Palmér, M.S., Skoog, I., Minthon, L., Wallin, A., Andreasen, N., Zetterberg, M., Zetterberg, H., No association of VEGF polymorphims with Alzheimer's disease (2010) Neuromol. Med., 12, pp. 224-228
He, D., Lu, W., Chang, K., Liu, Y., Zhang, J., Zeng, Z., Vascular endothelial growth factor polymorphisms and risk of Alzheimer's disease: a meta-analysis (2013) Gene, 518, pp. 296-302
Johnson, N.A., Jahng, G.H., Weiner, M.W., Miller, B.L., Chui, H.C., Jagust, W.J., Gorno-Tempini, M.L., Schuff, N., Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience (2005) Radiology, 234, pp. 851-859
Paris, D., Patel, N., DelleDonne, A., Quadros, A., Smeed, R., Mullan, M. Impaired angiogenesis in a transgenic mouse model of cerebral amyloidosis (2004) Neurosci. Lett., 366, pp. 80-85
Paris, D., Townsend, K., Quadros, A., Humphrey, J., Sun, J., Brem, S., Wotoczek-Obadia, M., Mullan, M., Inhibition of angiogenesis by Abeta peptides (2004) Angiogenesis, 7, pp. 75-85
Patel, N.S., Mathura, V.S., Bachmeier, C., Beaulieu-Abdelahad, D., Laporte, V., Weeks, O., Mullan, M., Paris, D., Alzheimer's beta-amyloid peptide blocks vascular endothelial growth factor mediated signaling via direct interaction with VEGFR-2 (2010) J. Neurochem., 112, pp. 66-76
Wang, P., Xie, Z.H., Guo, Y.J., Zhao, C.P., Jiang, H., Song, Y., Zhu, Z.Y., Bi, J.Z., VEGF-induced angiogenesis ameliorates the memory impairment in APP transgenic mouse model of Alzheimer's disease (2011) Biochem. Biophys. Res. Commun., 411, pp. 620-626
Garcia, K.O., Ornellas, F.L., Martin, P.K., Patti, C.L., Mello, L.E., Frussa-Filho, R., Han, S.W., Longo, B.M., Therapeutic effects of the transplantation of VEGF overexpressing bone marrow mesenchymal stem cells in the hippocampus of murine model of Alzheimer's disease (2014) Front. Aging Neurosci., 6, p. 30
Religa, P., Cao, R., Religa, D., Xue, Y., Bogdanovic, N., Westaway, D., Marti, H.H., Cao, Y., VEGF significantly restores impaired memory behavior in Alzheimer's mice by improvement of vascular survival (2013) Sci. Rep., 3, p. 2053
Pitzer, M.R., Sortwell, C.E., Daley, B.F., McGuire, S.O., Marchionini, D., Fleming, M., Collier, T.J., Angiogenic and neurotrophic effects of vascular endothelial growth factor (VEGF165): studies of grafted andcultured embryonic ventral mesencephalic cells (2003) Exp. Neurol., 182, pp. 435-445
Silverman, W.F., Krum, J.M., Mani, N., Rosenstein, J.M., Vascular, glial and neuronal effects of vascular endothelial growth factor in mesencephalic explant cultures (1999) Neuroscience, 90, pp. 1529-1541
Yasuhara, T., Shingo, T., Kobayashi, K., Takeuchi, A., Yano, A., Muraoka, K., Matsui, T., Date, I., Neuroprotective effects of vascular endothelial growth factor (VEGF) upon dopaminergic neurons in a rat model of Parkinson's disease (2004) Eur. J. Neurosci., 19, pp. 1494-1504
Tian, Y.Y., Tang, C.J., Wang, J.N., Feng, Y., Chen, X.W., Wang, L., Qiao, X., Sun, S.G., Favorable effects of VEGF gene transfer on a rat model of Parkinson disease using adeno-associated viral vectors (2007) Neurosci. Lett., 421, pp. 239-244
Ding, Y.H., Luan, X.D., Li, J., Rafols, J.A., Guthinkonda, M., Diaz, F.G., Ding, Y., Exercise-induced overexpression of angiogenic factors and reduction of ischemia/reperfusion injury in stroke (2004) Curr. Neurovasc. Res., 1, pp. 411-420
Ding, Y.H., Li, J., Zhou, Y., Rafols, J.A., Clark, J.C., Ding, Y., Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise (2006) Curr. Neurovasc. Res., 3, pp. 15-23
Villar-Cheda, B., Sousa-Ribeiro, D., Rodriguez-Pallares, J., Rodriguez-Perez, A.I., Guerra, M.J., Labandeira-Garcia, J.L., Aging and sedentarism decrease vascularization and VEGF levels in the rat substantia nigra. Implications for Parkinson's disease (2009) J. Cereb. Blood Flow. Metab., 29, pp. 230-234
Faucheux, B.A., Bonnet, A.M., Agid, Y., Hirsch, E.C., Blood vessels change in the mesencephalon of patients with Parkinson's disease (1999) Lancet, 353, pp. 981-982
Wada, K., Arai, H., Takanashi, M., Fukae, J., Oizumi, H., Yasuda, T., Mizuno, Y., Mochizuki, H., Expression levels of vascular endothelial growth factor and its recept ors in Parkinson's disease (2006) Neuroreport, 17, pp. 705-709
Pienaar, I.S., Lee, C.H., Elson, J.L., McGuinness, L., Gentleman, S.M., Kalaria, R.N., Dexter, D.T., Deep-brain stimulation associates with improved microvascular integrity in the subthalamic nucleus in Parkinson's disease (2015) Neurobiol. Dis., 74, pp. 392-405
Cui, W., Li, W., Han, R., Mak, S., Zhang, H., Hu, S., Rong, J., Han, Y., PI3-K/Akt and ERK pathways activated by VEGF play opposite roles in MPP+-induced neuronal apoptosis (2011) Neurochem. Int., 59, pp. 945-953
Janelidze, S., Lindqvist, D., Francardo, V., Hall, S., Zetterberg, H., Blennow, K., Adler, C.H., Hansson, O., Increased CSF biomarkers of angiogenesis in Parkinson disease (2015) Neurology, 85, pp. 1834-1842
Yao, Y., Tsirka, S.E., Monocyte chemoattractant protein-1 and the blood-brain barrier (2014) Cell. Mol. Life Sci., 71, pp. 683-697
Rite, I., Machado, A., Cano, J., Venero, J.L., Blood-brain barrier disruption induces in vivo degeneration of nigral dopaminergic neurons (2007) J. Neurochem., 101, pp. 1567-1582
Muñoz, A., Garrido-Gil, P., Dominguez-Meijide, A., Labandeira-Garcia, J.L., Angiotensin type 1 receptor blockage reduces l-dopa-induced dyskinesia in the 6-OHDA model of Parkinson's disease. Involvement of vascular endothelial growth factor and interleukin-1β (2014) Exp. Neurol., 261, pp. 720-732
Newton, S.S., Collier, E.F., Hunsberger, J., Adams, D., Terwilliger, R., Selvanayagam, E., Duman, R.S., Gene profile of electroconvulsive seizures: induction of neurotrophic and angiogenic factors (2003) J. Neurosci., 23, pp. 10841-10851
Nicoletti, J.N., Shah, S.K., McCloskey, D.P., Goodman, J.H., Elkady, A., Atassi, H., Hylton, D., Croll, S.D., Vascular endothelial growth factor is up-regulated after status epilepticus and protects against seizure-induced neuronal loss in hippocampus (2008) Neuroscience, 151, pp. 232-241
Nikitidou, L., Kanter-Schlifke, I., Dhondt, J., Carmeliet, P., Lambrechts, D., Kokaia, M., VEGF receptor-2 (Flk-1) overexpression in mice counteracts focal epileptic seizures (2012) PLoS One, 7, p. e40535
McCloskey, D.P., Croll, S.D., Scharfman, H.E., Depression of synaptic transmission by vascular endothelial growth factor in adult rat hippocampus and evidence for increased efficacy after chronic seizures (2005) J. Neurosci., 25, pp. 8889-8897
Cammalleri, M., Martini, D., Ristori, C., Timperio, A.M., Bagnoli, P., Vascular endothelial growth factor up-regulation in the mouse hippocampus and its role in the control of epileptiform activity (2011) Eur. J. Neurosci., 33, pp. 482-498
Vezzani, A., Friedman, A., Dingledine, R.J., The role of inflammation in epileptogenesis (2013) Neuropharmacology, 69, pp. 16-24
Shimada, T., Takemiya, T., Sugiura, H., Yamagata, K., Role of inflammatory mediators in the pathogenesis of epilepsy (2014) Mediat. Inflamm., 2014, p. 901902
Morin-Brureau, M., Lebrun, A., Rousset, M.C., Fagni, L., Bockaert, J., de Bock, F., Lerner-Natoli, M., Epileptiform activity induces vascular remodeling and zonula occludens 1 downregulation in organotypic hippocampal cultures: role of VEGF signaling pathways (2011) J. Neurosci., 31, pp. 10677-10688
Rhim, T., Lee, D.Y., Lee, M., Drug delivery systems for the treatment of ischemic stroke (2013) Pharm. Res., 30, pp. 2429-2444
Eppler, S.M., Combs, D.L., Henry, T.D., Lopez, J.J., Ellis, S.G., Yi, J.H., Annex, B.H., Zioncheck, T.F., A target-mediated model to describe the pharmacokinetics and hemodynamic effects of recombinant human vascular endothelial growth factor in humans (2002) Clin. Pharmacol. Ther., 72, pp. 20-32
Stefanini, M.O., Wu, F.T., Mac Gabhann, F., Popel, A.S., A compartment model of VEGF distribution in blood, healthy and diseased tissues (2008) BMC Syst. Biol., 2, p. 77
Vempati, P., Popel, A.S., Mac Gabhann, F., Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning (2014) Cytokine Growth Factor Rev., 25, pp. 1-19
Keyt, B.A., Berleau, L.T., Nguyen, H.V., Chen, H., Heinsohn, H., Vandlen, R., Ferrara, N., The carboxyl-terminal domain (111-165) of vascular endothelial growth factor is critical for its mitogenic potency (1996) J. Biol. Chem., 271, pp. 7788-7795
Lauer, G., Sollberg, S., Cole, M., Krieg, T., Eming, S.A., Generation of a novel proteolysis resistant vascular endothelial growth factor165 variant by a site-directed mutation at the plasmin sensitive cleavage site (2002) FEBS Lett., 531, pp. 309-313
Thorne, R.G., Pronk, G.J., Padmanabhan, V., Frey, W.H., 2nd, Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration (2004) Neuroscience, 127, pp. 481-496
Yang, J.P., Liu, H.J., Cheng, S.M., Wang, Z.L., Cheng, X., Yu, H.X., Liu, X.F., Direct transport of VEGF from the nasal cavity to brain (2009) Neurosci. Lett., 449, pp. 108-111
Thorne, R.G., Frey, W.H., II, Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations (2001) Clin. Pharmacokinet., 40, pp. 907-946
Gu, F., Amsden, B., Neufeld, R., Sustained delivery of vascular endothelial growth factor with alginate beads (2004) J. Control. Release, 96, pp. 463-472
Lee, K.W., Yoon, J.J., Lee, J.H., Kim, S.Y., Jung, H.J., Kim, S.J., Joh, J.W., Lee, S.K., Sustained release of vascular endothelial growth factor from calcium-induced alginate hydrogels reinforced by heparin and chitosan (2004) Transplant. Proc., 36, pp. 2464-2465
Semete, B., Booysen, L., Lemmer, Y., Kalombo, L., Katata, L., Verschoor, J., Swai, H.S., In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems (2010) Nanomedicine, 6, pp. 662-671
Golub, J.S., Kim, Y.T., Duvall, C.L., Bellamkonda, R.V., Gupta, D., Lin, A.S., Weiss, D., Guldberg, R.E., Sustained VEGF delivery via PLGA nanoparticles promotes vascular growth (2010) Am. J. Physiol. Heart Circ. Physiol., 298, pp. H1959-H1965
Formiga, F.R., Pelacho, B., Garbayo, E., Abizanda, G., Gavira, J.J., Simon-Yarza, T., Mazo, M., Blanco-Prieto, M.J., Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia-reperfusion model (2010) J. Control. Release, 147, pp. 30-37
Herrán, E., Pérez-González, R., Igartua, M., Pedraz, J.L., Carro, E., Hernández, R.M., VEGF-releasing biodegradable nanospheres administered by craniotomy: a novel therapeutic approach in the APP/Ps1 mouse model of Alzheimer's disease (2013) J., Control,l Release, 170, pp. 111-119
Herran, E., Perez-Gonzalez, R., Igartua, M., Pedraz, J.L., Carro, E., Hernandez, R.M., Enhanced Hippocampal Neurogenesis in APP/Ps1 Mouse Model of Alzheimer's Disease After Implantation of VEGF-loaded PLGA Nanospheres (2015) Curr. Alzheimer Res., 12, pp. 932-940
Herrán, E., Ruiz-Ortega, J.Á., Aristieta, A., Igartua, M., Requejo, C., Lafuente, J.V., Ugedo, L., Hernández, R.M., In vivo administration of VEGF- and GDNF-releasing biodegradable polymeric microspheres in a severe lesion model of Parkinson's disease (2013) Eur. J. Pharm. Biopharm., 85 (3), pp. 1183-1190
Herrán, E., Requejo, C., Ruiz-Ortega, J.A., Aristieta, A., Igartua, M., Bengoetxea, H., Ugedo, L., Hernández, R.M., Increased antiparkinson efficacy of the combined administration of VEGF- and GDNF-loaded nanospheres in a partial lesion model of Parkinson's disease (2014) Int. J. Nanomed., 9, pp. 2677-2687
Ju, R., Wen, Y., Gou, R., Wang, Y., Xu, Q., The experimental therapy on brain ischemia by improvement of local angiogenesis with tissue engineering in the mouse (2014) Cell Transplant., 23, pp. S83-S95
Zhu, J., Jiang, Y., Xu, G., Liu, X., Intranasal administration: a potential solution for cross-BBB delivering neurotrophic factors (2012) Histol. Histopathol., 27, pp. 537-548
Andrade, C., Intranasal drug delivery in neuropsychiatry: focus on intranasal ketamine for refractory depression (2015) J. Clin. Psychiatry, 76, pp. 628-631
Derry, C.J., Derry, S., Moore, R.A., Sumatriptan (intranasal route of administration) for acute migraine attacks in adults (2012) Cochrane Database Syst. Rev., 2
Dietrich, E., Gums, J.G., Intranasal fentanyl spray: a novel dosage form for the treatment of breakthrough cancer pain (2012) Ann. Pharmacother., 46, pp. 1382-1391
Grassin-Delyle, S., Buenestado, A., Naline, E., Faisy, C., Blouquit-Laye, S., Couderc, L.J., Le Guen, M., Devillier, P., Intranasal drug delivery: an efficient and non-invasive route for systemic administration: focus on opioids (2012) Pharmacol. Ther., 134, pp. 366-379
Kerr, D., Dietze, P., Kelly, A.M., Intranasal naloxone for the treatment of suspected heroin overdose (2008) Addiction, 103, pp. 379-386
Kronenberg, R.H., Ketamine as an analgesic: parenteral, oral, rectal, subcutaneous, transdermal and intranasal administration (2002) J. Pain Palliat. Care Pharmacother., 16, pp. 27-35
Murphy, A., O'Sullivan, R., Wakai, A., Grant, T.S., Barrett, M.J., Cronin, J., McCoy, S.C., Kandamany, N., Intranasal fentanyl for the management of acute pain in children (2014) Cochrane Database Syst. Rev., 10. , (CD009942)
Pires, A., Fortuna, A., Alves, G., Falcão, A., Intranasal drug delivery: how, why and what for? (2009) J. Pharm. Pharm. Sci., 12, pp. 288-311
Rapoport, A.M., Bigal, M.E., Tepper, S.J., Sheftell, F.D., Intranasal medications for the treatment of migraine and cluster headache (2004) CNS Drugs, 18, pp. 671-685
Robinson, A., Wermeling, D.P., Intranasal naloxone administration for treatment of opioid overdose (2014) Am. J. Health Syst. Pharm., 71, pp. 2129-2135
Santangelo, B., Micieli, F., Marino, F., Reynaud, F., Cassandro, P., Carfora, A., Petrella, R., Vesce, G., Plasma concentrations and sedative effects of a dexmedetomidine, midazolam, and butorphanol combination after transnasal administration in healthy rabbits (2016) J. Vet. Pharm. Ther., 39, pp. 408-411
Sibley, T., Jacobsen, R., Salomone, J., Successful administration of intranasal glucagon in the out-of-hospital environment (2013) Prehosp. Emerg. Care, 17, pp. 98-102
Wolfe, T.R., Bernstone, T., Intranasal drug delivery: an alternative to intravenous administration in selected emergency cases (2004) J. Emerg. Nurs., 30, pp. 141-147
Guardia Clausi, M., Paez, P.M., Pasquini, L.A., Pasquini, J.M., Inhalation of growth factors and apo-transferrin to protect and repair the hypoxic-ischemic brain (2016) Pharmacol. Res., 109, pp. 81-85
Graff, C.L., Pollack, G.M., Nasal drug administration: potential for targeted central nervous system delivery (2005) J. Pharm. Sci., 94, pp. 1187-1195
Tayebati, S.K., Nwankwo, I.E., Amenta, F., Intranasal drug delivery to the central nervous system: present status and future outlook (2013) Curr. Pharm. Des., 19, pp. 510-526
Spetter, M.S., Hallschmid, M., Intranasal neuropeptide administration to target the human brain in health and disease (2015) Mol. Pharm., 12 (8), pp. 2767-2780
Sun, J., Wei, Z.Z., Gu, X., Zhang, J.Y., Zhang, Y., Li, J., Wei, L., Intranasal delivery of hypoxia-preconditioned bone marrow-derived mesenchymal stem cells enhanced regenerative effects after intracerebral hemorrhagic stroke in mice (2015) Exp. Neurol., 272, pp. 78-87
Zhao, Q., Hu, J., Xiang, J., Gu, Y., Jin, P., Hua, F., Zhang, Z., Ye, X., Intranasal administration of human umbilical cord mesenchymal stem cells-conditioned medium enhances vascular remodeling after stroke (1624) Brain Res., 2015, pp. 489-496
Illum, L., Transpot of drugs from the nasal cavity to the central nervous system (2000) Eur. J. Pharm. Sci., 11, pp. 1-18
Kapoor, M., Cloyd, J.C., Siegel, R.A., A review of intranasal formulations for the treatment of seizure emergencies (2016) J. Control Release, 237, pp. 147-159
Matsune, S., Ohori, J., Yoshifuku, K., Kurono, Y., Effect of vascular endothelial growth factor on nasal vascular permeability (2010) Laryngoscope, 120, pp. 844-848
Henry, T., Annex, B., Azrin, M., Double blind placebo controlled trial of recombinant human vascular endothelial growth factor: the VIVA trial (1999) J. Am. Coll. Cardiol., 33, p. 384A. , (Abstract)
Laham, R.J., Sellke, F.W., Edelman, E.R., Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebo-controlled trial (1999) Circulation, 100, pp. 1865-1871
Laitinen, M., Hartikainen, J., Hiltunen, M.O., Catheter-mediated vascular endothelial growth factor gene transfer to human coronary arteries after angioplasty (2000) Hum. Gene Ther., 11, pp. 263-270
Losordo, D.W., Vale, P.R., Symes, J.F., Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia (1998) Circulation, 98, pp. 2800-2804
Rosengart, T.K., Lee, L.Y., Patel, S.R., Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease (1999) Circulation, 100, pp. 468-474
Schumacher, B., Pecher, P., von Specht, B., Induction of neoangiogenesis in ischemic myocardium by human growth factors (1998) Circulation, 97, pp. 645-650
Springer, M.L., Chen, A.S., Kraft, P.E., Bednarski, M., Blau, H.M., VEGF gene delivery to muscle: potential role for vasculogenesis in adults (1998) Mol. Cell, 2, pp. 549-558
Lee, R.J., Springer, M.L., Blanco-Bose, W.E., Shaw, R., Ursell, P.C., Blau, H.M., VEGF gene delivery to myocardium: deleterious effects of unregulated expression (2000) Circulation, 102, pp. 898-901
Pettersson, A., Nagy, J.A., Brown, L.F., Sundberg, C., Morgan, E., Jungles, S., Carter, R., Harvey, V.S., Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor (2000) Lab. Investig., 80, pp. 99-115
Sundberg, C., Nagy, J.A., Brown, L.F., Feng, D., Eckelhoefer, I.A., Manseau, E.J., Dvorak, A.M., Dvorak, H.F., Glomeruloid microvascular proliferation follows adenoviral vascular permeability factor/vascular endothelial growth factor-164 gene delivery (2001) Am. J. Pathol., 158, pp. 1145-1160
Schwarz, E.R., Speakman, M.T., Patterson, M., Hale, S.S., Isner, J.M., Kedes, L.H., Kloner, R.A., Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat: angiogenesis and angioma formation (2000) J. Am. Coll. Cardiol., 35, pp. 1323-1330
Chen, B., Friedman, B., Cheng, Q., Tsai, P., Schim, E., Kleinfeld, D., Lyden, P.D., Severe blood-brain barrier disruption and surrounding tissue injury (2009) Stroke, 40, pp. e666-e674
Keaney, J., Campbell, M., The dynamic blood-brain barrier (2015) FEBS J., 282, pp. 4067-4079
Montagne, A., Nation, D.A., Pa, J., Sweeney, M.D., Toga, A.W., Zlokovic, B.V., Brain imaging of neurovascular dysfunction in Alzheimer's disease (2016) Acta Neuropathol., 131, pp. 687-707
Popescu, B.O., Toescu, E.C., Popescu, L.M., Bajenaru, O., Muresanu, D.F., Schultzberg, M., Bogdanovic, N., Blood-brain barrier alterations in ageing and dementia (2009) J. Neurol. Sci., 283, pp. 99-106
Prakash, R., Carmichael, S.T., Blood-brain barrier breakdown and neovascularization processes after stroke and traumatic brain injury (2015) Curr. Opin. Neurol., 28, pp. 556-564
Stolp, H.B., Dziegielewska, K.M., Review: role of developmental inflammation and blood-brain barrier dysfunction in neurodevelopmental and neurodegenerative diseases (2009) Neuropathol. Appl. Neurobiol., 35, pp. 132-146
Ueno, M., Chiba, Y., Matsumoto, K., Murakami, R., Fujihara, R., Kawauchi, M., Miyanaka, H., Nakagawa, T., Blood-brain barrier damage in vascular dementia (2016) Neuropathology, 36, pp. 115-124
Zlokovic, B.V., Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders (2011) Nat. Rev. Neurosci., 12, pp. 723-738
Zlokovic, B.V., The blood-brain barrier in health and chronic neurodegenerative disorders (2008) Neuron, 57, pp. 178-201
Senger, D.R., Galli, S.J., Dvorak, A.M., Perruzzi, C.A., Harvey, V.S., Dvorak, H.F., Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid (1983) Science, 219, pp. 983-985
Horowitz, A., Seerapu, H.R., Regulation of VEGF signaling by membrane traffic (2012) Cell Signal., 24, pp. 1810-1820
Nakayama, M., Berger, P., Coordination of VEGF receptor trafficking and signaling by coreceptors (2013) Exp. Cell Res., 319, pp. 1340-1347
Argaw, A.T., Gurfein, B.T., Zhang, Y., Zameer, A., John, G.R., VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 1977-1982
Fischer, S., Wobben, M., Marti, H.H., Renz, D., Schaper, W., Hypoxia-induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1 (2002) Microvasc. Res., 63, pp. 70-80
Ghassemifar, R., Lai, C.M., Rakoczy, P.E., VEGF differentially regulates transcription and translation of ZO-1alpha+ and ZO-1alpha- and mediates trans-epithelial resistance in cultured endothelial and epithelial cells (2006) Cell Tissue Res, 323, pp. 117-125
Wang, W., Dentler, W.L., Borchardt, R.T., VEGF increases BMEC monolayer permeability by affecting occludin expression and tight junction assembly (2001) Am. J. Physiol. Heart Circ. Physiol., 280, pp. H434-H440
Argaw, A.T., Asp, L., Zhang, J., Navrazhina, K., Pham, T., Mariani, J.N., Mahase, S., John, G.R., Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease (2012) J. Clin. Investig., 122, pp. 2454-2468
Suzuki, Y., Nagai, N., Yamakawa, K., Muranaka, Y., Hokamura, K., Umemura, K., Recombinant tissue-type plasminogen activator transiently enhances blood-brain barrier permeability during cerebral ischemia through vascular endothelial growth factor-mediated endothelial endocytosis in mice (2015) J. Cereb. Blood Flow. Metab., 35, pp. 2021-2031
Kanazawa, M., Igarashi, H., Kawamura, K., Takahashi, T., Kakita, A., Takahashi, H., Inhibition of VEGF signaling pathway attenuates hemorrhage after tPA treatment (2011) J. Cereb. Blood Flow. Metab., 31, pp. 1461-1474
Reeson, P., Tennant, K.A., Gerrow, K., Wang, J., Weiser Novak, S., Thompson, K., Lockhart, K.L., Brown, C.E., Delayed inhibition of VEGF signaling after stroke attenuates blood-brain barrier breakdown and improves functional recovery in a comorbidity-dependent manner (2015) J. Neurosci., 35, pp. 5128-5143
Lee, I.L., Li, P.S., Yu, W.L., Shen, H.H., Prokaryotic expression, refolding, and purification of functional human vascular endothelial growth factor isoform 165: purification procedures and refolding conditions revisited (2011) Protein Expr. Purif., 76, pp. 54-58
Cohen, T., Gitay-Goren, H., Neufeld, G., Levi, B.Z., High levels of biologically active vascular endothelial growth factor (VEGF) are produced by the baculovirus expression system (1992) Growth Factors, 7, pp. 131-138
Pizarro, S.A., Gunson, J., Field, M.J., Dinges, R., Khoo, S., Dalal, M., Lee, M., Schmelzer, C.H., High-yield expression of human vascular endothelial growth factor VEGF(165) in Escherichia coli and purification for therapeutic applications (2010) Protein Expr. Purif., 72, pp. 184-193
Scheidegger, P., Weiglhofer, W., Suarez, S., Kaser-Hotz, B., Steiner, R., Ballmer-Hofer, K., Jaussi, R., Vascular endothelial growth factor (VEGF) and its receptors in tumor-bearing dogs (1999) Biol. Chem., 380, pp. 1449-1454
Mandal, K., Kent, S.B., Total chemical synthesis of biologically active vascular endothelial growth factor (2011) Angew. Chem. Int. Ed. Engl., 50, pp. 8029-8033
Bae, D.G., Kim, T.D., Li, G., Yoon, W.H., Chae, C.B., Anti-flt1 peptide, a vascular endothelial growth factor receptor 1-specific hexapeptide, inhibits tumor growth and metastasis (2005) Clin. Cancer Res., 11, pp. 2651-2661
Basile, A., Del Gatto, A., Diana, D., Di Stasi, R., Falco, A., Festa, M., Rosati, A., D'Andrea, L.D., Characterization of a designed vascular endothelial growth factor receptor antagonist helical peptide with antiangiogenic activity in vivo (2011) J. Med. Chem., 54, pp. 1391-1400
Foy, K.C., Liu, Z., Phillips, G., Miller, M., Kaumaya, P.T., Combination treatment with HER-2 and VEGF peptide mimics induces potent anti-tumor and anti-angiogenic responses in vitro and in vivo (2011) J. Biol. Chem., 286, pp. 13626-13637
Rastelli, L., Valentino, M.L., Minderman, M.C., Landin, J., Malyankar, U.M., Lescoe, M.K., Kitson, R., Rabbani, S.A., A KDR-binding peptide (ST100,059) can block angiogenesis, melanoma tumor growth and metastasis in vitro and in vivo (2011) Int. J. Oncol., 39, pp. 401-408
Vicari, D., Foy, K.C., Liotta, E.M., Kaumaya, P.T., Engineered conformation-dependent VEGF peptide mimics are effective in inhibiting VEGF signaling pathways (2011) J. Biol. Chem., 286, pp. 13612-13625
D'Andrea, L.D., Del Gatto, A., De Rosa, L., Romanelli, A., Pedone, C., Peptides targeting angiogenesis related growth factor receptors (2009) Curr. Pharm. Des., 15, pp. 2414-2429
D'Andrea, L.D., Iaccarino, G., Fattorusso, R., Sorriento, D., Carannante, C., Capasso, D., Trimarco, B., Pedone, C., Targeting angiogenesis: structural characterization and biological properties of a de novo engineered VEGF mimicking peptide (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 14215-14220
Wiesmann, C., Fuh, G., Christinger, H.W., Eigenbrot, C., Wells, J.A., de Vos, A.M., Crystal structure at 1.7 Å resolution of VEGF in complex with domain 2 of the Flt-1 receptor (1997) Cell, 91, pp. 695-704
Diana, D., Ziaco, B., Colombo, G., Scarabelli, G., Romanelli, A., Pedone, C., Fattorusso, R., D'Andrea, L.D., Structural determinants of the unusual helix stability of a de novo engineered vascular endothelial growth factor (VEGF) mimicking peptide (2008) Chemistry, 14, pp. 4164-4166
Ziaco, B., Diana, D., Capasso, D., Palumbo, R., Celentano, V., Di Stasi, R., Fattorusso, R., D'Andrea, L.D., C-terminal truncation of Vascular Endothelial Growth Factor mimetic helical peptide preserves structural and receptor binding properties (2012) Biochem. Biophys. Res. Commun., 424, pp. 290-294
Finetti, F., Basile, A., Capasso, D., Di Gaetano, S., Di Stasi, R., Pascale, M., Turco, C.M., D'Andrea, L.D., Functional and pharmacological characterization of a VEGF mimetic peptide on reparative angiogenesis (2012) Biochem. Pharmacol., 84, pp. 303-311
Santulli, G., Ciccarelli, M., Palumbo, G., Campanile, A., Galasso, G., Ziaco, B., Altobelli, G.G., Iaccarino, G., In vivo properties of the proangiogenic peptide QK (2009) J. Transl. Med., 7, p. 41
Dudar, G.K., D'Andrea, L.D., Di Stasi, R., Pedone, C., Wallace, J.L., A vascular endothelial growth factor mimetic accelerates gastric ulcer healing in an iNOS-dependent manner (2008) Am. J. Physiol. Gastrointest. Liver Physiol., 295, pp. G374-G381
Verheyen, A., Peeraer, E., Lambrechts, D., Poesen, K., Carmeliet, P., Shibuya, M., Pintelon, I., Meert, T., Therapeutic potential of VEGF and VEGF-derived peptide in peripheral neuropathies (2013) Neuroscience, 244, pp. 77-89
Chan, T.R., Stahl, P.J., Yu, S.M., Matrix-Bound VEGF Mimetic Peptides: design and Endothelial Cell Activation in Collagen Scaffolds (2011) Adv. Funct. Mater., 21, pp. 4252-4262
Lee, J.S., Wagoner Johnson, A.J., Murphy, W.L., A modular, hydroxyapatite-binding version of vascular endothelial growth factor (2010) Adv. Mater., 22, pp. 5494-5498
Leslie-Barbick, J.E., Saik, J.E., Gould, D.J., Dickinson, M.E., West, J.L., The promotion of microvasculature formation in poly(ethylene glycol) diacrylate hydrogels by an immobilized VEGF-mimetic peptide (2011) Biomaterials, 32, pp. 5782-5789
Liu, X., Wang, X., Horii, A., Wang, X., Qiao, L., Zhang, S., Cui, F.Z., In vivo studies on angiogenic activity of two designer self-assembling peptide scaffold hydrogels in the chicken embryo chorioallantoic membrane (2012) Nanoscale, 4, pp. 2720-2727
Mulyasasmita, W., Cai, L., Hori, Y., Heilshorn, S.C., Avidity-controlled delivery of angiogenic peptides from injectable molecular-recognition hydrogels (2014) Tissue Eng. Part A., 20, pp. 2102-2114
Stahl, P.J., Chan, T.R., Shen, Y.I., Sun, G., Gerecht, S., Yu, S.M., Capillary Network-Like Organization of Endothelial Cells in PEGDA Scaffolds Encoded with Angiogenic Signals via Triple Helical Hybridization (2014) Adv. Funct. Mater., 24, pp. 3213-3225
Suárez-González, D., Barnhart, K., Migneco, F., Flanagan, C., Hollister, S.J., Murphy, W.L., Controllable mineral coatings on PCL scaffolds as carriers for growth factor release (2012) Biomaterials, 33, pp. 713-721
Webber, M.J., Tongers, J., Newcomb, C.J., Marquardt, K.T., Bauersachs, J., Losordo, D.W., Stupp, S.I., Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 13438-13443
Pignataro, G., Ziaco, B., Tortiglione, A., Gala, R., Cuomo, O., Vinciguerra, A., Lapi, D., Cataldi, M., Neuroprotective effect of vegf-mimetic peptide qk in experimental brain ischemia induced in rat by middle cerebralartery occlusion (2015) ACS Chem. Neurosci., 6, pp. 1517-1525
Zhang, Y., Furumura, M., Morita, E., Distinct signaling pathways confer different vascular responses to VEGF 121 and VEGF 165 (2008) Growth Factors, 26, pp. 125-131
Diana, D., Basile, A., De Rosa, L., Di Stasi, R., Auriemma, S., Arra, C., Pedone, C., D'Andrea, L.D., β-hairpin peptide that targets vascular endothelial growth factor (VEGF) receptors: design, NMR characterization, and biological activity (2011) J. Biol. Chem., 286, pp. 41680-41691
Diana, D., De Rosa, L., Palmieri, M., Russomanno, A., Russo, L., La Rosa, C., Milardi, D., Fattorusso, R., Long range Trp-Trp interaction initiates the folding pathway of a pro-angiogenic β-hairpin peptide (2015) Sci. Rep., 5, p. 16651
Di Stasi, R., Diana, D., Capasso, D., Palumbo, R., Romanelli, A., Pedone, C., Fattorusso, R., D'Andrea, L.D., VEGFR1(D2) in drug discovery: expression and molecular characterization (2010) Biopolymers, 94 (6), pp. 800-809
Diana, D., Russomanno, A., De Rosa, L., Di Stasi, R., Capasso, D., Di Gaetano, S., Romanelli, A., Fattorusso, R., Functional binding surface of a β-hairpin VEGF receptor targeting peptide determined by NMR spectroscopy in living cells (2015) Chemistry, 21, pp. 91-95
De Rosa, L., Finetti, F., Diana, D., Di Stasi, R., Auriemma, S., Romanelli, A., Fattorusso, R., D'Andrea, L.D., Miniaturizing VEGF: peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response (2016) Sci. Rep., 6, p. 31295
VEGF mimic peptides: Potential applications in central nervous system therapeutics
Bruni AC, Bernardi L, Colao R, Rubino E, Smirne N, Frangipane F, Terni B, Curcio SA, Mirabelli M, Clodomiro A, Di Lorenzo R, Maletta R, Anfossi M, Gallo M, Geracitano S, Tomaino C, Muraca MG, Leotta A, Lio SG, Pinessi L, Rainero I, Sorbi S, Nee L, Milan G, Pappata S, Postiglione A, Abbamondi N, Forloni G, St George Hyslop P, Rogaeva E, Bugiani O, Giaccone G, Foncin JF, Spillantini MG, Puccio G * Worldwide distribution of PSEN1 Met146Leu mutation: A large variability for a founder mutation(819 views) Neurology (ISSN: 0028-3878, 1526-632x, 1526-632xelectronic), 2010 Mar 9; 74(10): 798-806. Impact Factor:8.017 ViewExport to BibTeXExport to EndNote