National Research Council, Institute of Biophysics, Via Ugo La Malfa 153, Palermo, 90146, Italy
Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Ancona, Italy
Department of Physics and Chemistry, Università di Palermo, Italy
References: Hering, H., Lin, C.C., Sheng, M., Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability (2003) J. Neurosci., 23 (8), pp. 3262-327
Yanagisawa, K., Ihara, Y., Ganglioside-bound amyloid β-protein in Alzheimer's Disease brain (1998) Neurobiol. Aging, 19 (1), pp. S65-S67
Yanagisawa, K., Odaka, A., Suzuki, N., Ihara, Y., GM1 ganglioside-bound amyloid β-protein (Aβ): A possible form of preamyloid in Alzheimer's disease (1995) Nat. Med., 1, pp. 1062-1066
Matsuzaki, K., How do membranes initiate Alzheimer's Disease? Formation of toxic amyloid fibrils by the amyloid β-protein on ganglioside clusters (2014) Acc. Chem. Res., 47 (8), pp. 2397-2404
Kakio, A., Nishimoto, S.I., Yanagisawa, K., Kozutsumi, Y., Matsuzaki, K., Cholesterol-dependent formation of GM1 ganglioside-bound amyloid beta-protein, an endogenous seed for Alzheimer amyloid (2001) J. Biol. Chem., 276 (27), pp. 24985-24990
McLaurin, J., Franklin, T., Fraser, P.E., Chakrabartty, A., Structural transitions associated with the interaction of Alzheimer beta-amyloid peptides with gangliosides (1998) J. Biol. Chem., 273 (8), pp. 4506-4515
Fantini, J., Nouara, Y., Garmy, N., Cholesterol accelerates the binding of Alzheimer's β-amyloid peptide to ganglioside GM1 through a universal hydrogen-bond-dependent sterol tuning of glycolipid conformation (2013) Front. Physiol., 4, p. 120
Kurganov, B., Doh, M., Arispe, N., Aggregation of liposomes induced by the toxic peptides Alzheimer's Abetas, human amylin and prion (106-126): Facilitation by membrane-bound GM1 ganglioside (2004) Peptides, 25 (2), pp. 217-232
Mandal, P.K., Pettegrew, J.W., Alzheimer's disease: NMR studies of asialo (GM1) and trisialo (GT1b) ganglioside interactions with Abeta(1-40) peptide in a membrane mimic environment (2004) Neurochem. Res., 29 (2), pp. 447-453
Tashima, Y., Oe, R., Lee, S., Sugihara, G., Chambers, E.J., Takahashi, M., Yamada, T., The effect of cholesterol and monosialoganglioside (GM1) on the release and aggregation of amyloid beta-peptide from liposomes prepared from brain membrane-like lipids (2004) J. Biol. Chem., 279 (17), pp. 17587-17595
Williams, T.L., Serpell, L.C., Membrane and surface interactions of Alzheimer's Aβ peptide -insights into the mechanism of cytotoxicity (2011) FEBS J., 278 (20), pp. 3905-3917
Valdes-Gonzalez, T., Inagawa, J., Ido, T., Characterization of the interactions of ß-amyloid peptides with glycolipid receptors by surface plasmon resonance (2003) Spectroscopy, 17 (2-3), pp. 241-254
Lin, M.S., Chiu, H.M., Fan, F.J., Tsai, H.T., Wang, S.S., Chang, Y., Chen, W.Y., Kinetics and enthalpy measurements of interaction between beta-amyloid and liposomes by surface plasmon resonance and isothermal titration microcalorimetry (2007) Colloids Surf. B: Biointerfaces, 58 (2), pp. 231-236
Hirai, M., Kimura, R., Takeuchi, K., Sugiyama, M., Kasahara, K., Ohta, N., Farago, B., Zaccai, G., Change of dynamics of raft-model membrane induced by amyloid-β protein binding (2013) Eur. Phys. J. E., 36 (7), p. 74
Fezoui, Y., Hartley, D.M., Harper, J.D., Khurana, R., Walsh, D.M., Condron, M.M., Selkoe, D.J., Teplow, D.B., An improving method of preparing the amyloid beta-protein for fibrillogenesis and neurotoxicity experiments (2000) Amyloid, 7 (3), pp. 166-178
Edelhoch, H., Spectroscopic determination of tryptophan and tyrosine in proteins (1967) Biochemistry, 6 (7), pp. 1948-1954
Dickey, A., Faller, R., Examining the contributions of lipid shape and headgroup charge on bilayer behavior (2008) Biophys. J., 95 (6), pp. 2636-2646
Kucerka, N., Nieh, M.-P., Katsaras, J., Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature (2011) BBA, 1808 (11), pp. 2761-2771
Stepanek, P., (1993) Dynamic Light Scattering: The Method and Some Applications, p. 177. , W. Brown, Clarendon Press Oxford, UK
Freire, E., Mayorga, O.L., Straume, M., (1990) Anal. Chem., 62, pp. 950A-958A
Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N., Häusermann, D., Two-dimensional detector software: From real detector to idealised image or two-Theta scan (1996) High Pressure Res., 14, pp. 235-248
Guinier, A., (1963) X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies, , Courier Dover Publications San Francisco and London
Brzustowicz, M.R., Brunger, A.T., X-ray scattering from unilamellar lipid vesicles (2005) J. Appl. Crystallogr., 38, pp. 126-131
Castorph, S., Arleth, L., Sztucki, M., Vainio, U., Ghosh, S.K., Holt, M., Jahn, R., Salditt, T., Synaptic vesicles studied by SAXS: Derivation and validation of a model form factor (2010) J. Phys. Conf. Ser., 247 (1), p. 012015
Castorph, S., Riedel, D., Arleth, L., Sztucki, M., Jahn, R., Holt, M., Salditt, T., Structure parameters of synaptic vesicles quantified by small-angle X-ray scattering (2010) Biophys. J., 98 (7), pp. 1200-1208
Baroni, D., Zegarra-Moran, O., Moran, O., Functional and pharmacological induced structural changes of the cystic fibrosis transmembrane conductance regulator in the membrane solved using SAXS (2015) Cell. Mol. Life Sci., 72 (7), pp. 1363-1375
Pabst, G., Rappolt, M., Amenitsch, H., Laggner, P., Structural information from multilamellar liposomes at full hydration: Full q-range fitting with high-quality X-ray data (2000) Phys. Rev. E, 62 (3), pp. 4000-4009
Finean, J.B., Interaction between cholesterol and phospholipid in hydrated bilayers (1990) Chem. Phys. Lipids, 54 (3-4), pp. 147-156
Bhattacharya, S., Haldar, S., Interactions between cholesterol and lipids in bilayer membranes. Role of lipid head group and hydrocarbon chain-backbone linkage (2000) Biochim. Biophys. Acta, 1467 (1), pp. 39-53
McMullen, T.P., Lewis, R.N., McElhaney, R.N., Comparative differential scanning calorimetric and FTIR and 31PP-NMR spectroscopic studies of the effects of cholesterol and androstenol on the thermotropic phase behavior and organization of phosphatidylcholine bilayers (1994) Biophys. J., 66 (3), pp. 741-752
Matos, C., Lima, J.L.C., Reis, S., Lopes, A., Bastos, M., Interaction of anti-inflammatory drugs with EPC liposomes: Calorimetric study in a broad concentration range (2004) Biophys. J., 86, pp. 946-954
Van Meer, G., Voelker, D.R., Feigenson, G.W., Membrane lipids: Where they are and how they behave (2008) Nat. Rev. Mol. Cell Biol., 9, pp. 112-124
Carrotta, R., Canale, C., Diaspro, A., Trapani, A., San Biagio, P.L., Bulone, D., Inhibiting effect of αs1-casein on Aβ1-40 fibrillogenesis (2012) Biochim. Biophys. Acta, 1820 (2), pp. 124-132
Corsale, C., Carrotta, R., Mangione, M.R., Vilasi, S., Provenzano, A., Cavallaro, G., Bulone, D., San Biagio, P.L., Entrapment of Aβ(1-40) peptide in unstructured aggregates (2012) J. Phys. Condens. Matter, 24 (24), p. 244103
Canale, C., Seghezza, S., Vilasi, S., Carrotta, R., Bulone, D., Diaspro, A., San Biagio, P.L., Dante, S., Different effects of Alzheimer's peptide Aβ(1-40) oligomers and fibrils on supported lipid membranes (2013) Biophys. Chem., 182, pp. 23-29
Amyloid β-peptide insertion in liposomes containing GM1-cholesterol domains