Potential skin morbidity reduction with intensity-modulated proton therapy for breast cancer with nodal involvement(232 views) Fellin F, Iacco M, D'Avino V, Tommasino F, Farace P, Palma G, Conson M, Giacomelli I, Zucchetti C, Falcinelli L, Amichetti M, Aristei C, Cella L
a Protontherapy Department , Azienda Provinciale per I Servizi Sanitari (APSS) , Trento , Italy.
b Perugia General Hospital , Medical Physics Unit , Perugia , Italy.
c Institute of Biostructures and Bioimaging , National Research Council (CNR) , Naples , Italy.
d Department of Physics , University of Trento , Povo , Italy.
e Trento Institute for Fundamental Physics and Applications (TIFPA) , National Institute for Nuclear Physics (INFN) , Povo , Italy.
f Department of Advanced Biomedical Sciences , Federico II University School of Medicine , Naples , Italy.
g Radiation Oncology Section , Perugia General Hospital , Perugia , Italy.
h Department of Surgical and Biomedical Science , University of Perugia , Perugia , Italy.
i National Institute for Nuclear Physics (INFN) , Naples , Italy.
References: Not available.
Potential skin morbidity reduction with intensity-modulated proton therapy for breast cancer with nodal involvement
Background: Different modern radiation therapy treatment solutions for breast cancer (BC) and regional nodal irradiation (RNI) have been proposed. In this study, we evaluate the potential reduction in radiation-induced skin morbidity obtained by intensity modulated proton therapy (IMPT) compared with intensity modulated photon therapy (IMXT) for left-side BC and RNI. Material and Methods: Using CT scans from 10 left-side BC patients, treatment plans were generated using IMXT and IMPT techniques. A dose of 50 Gy (or Gy [RBE] for IMPT) was prescribed to the target volume (involved breast, the internal mammary, supraclavicular, and infraclavicular nodes). Two single filed optimization IMPT (IMPT(1) and IMPT(2)) plans were calculated without and with skin optimization. For each technique, skin dose-metrics were extracted and normal tissue complication probability (NTCP) models from the literature were employed to estimate the risk of radiation-induced skin morbidity. NTCPs for relevant organs-at-risk (OARs) were also considered for reference. The non-parametric Anova (Friedman matched-pairs signed-rank test) was used for comparative analyses. Results: IMPT improved target coverage and dose homogeneity even if the skin was included into optimization strategy (HI(IMPT2) = 0.11 vs. HI(IMXT) = 0.22 and CI(IMPT2) = 0.96 vs. CI(IMXT) = 0.82, p < .05). A significant relative skin risk reduction (RR = NTCP(IMPT)/NTCP(IMXT)) was obtained with IMPT(2) including the skin in the optimization with a RR reduction ranging from 0.3 to 0.9 depending on the analyzed skin toxicity endpoint/model. Both IMPT plans attained significant OARs dose sparing compared with IMXT. As expected, the heart and lung doses were significantly reduced using IMPT. Accordingly, IMPT always provided lower NTCP values. Conclusions: IMPT guarantees optimal target coverage, OARs sparing, and simultaneously minimizes the risk of skin morbidity. The applied model-based approach supports the potential clinical relevance of IMPT for left-side BC and RNI and might be relevant for the setup of cost-effectiveness evaluation strategies based on NTCP predictions, as well as for establishing patient selection criteria.
Potential skin morbidity reduction with intensity-modulated proton therapy for breast cancer with nodal involvement
Kim YH, Shin SW, Pellicano R, Fagoonee S, Choi IJ, Kim YI, Park B, Choi JM, Kim SG, Choi J, Park JY, Oh S, Yang HJ, Lim JH, Im JP, Kim JS, Jung HC, Ponzetto A, Figura N, Malfertheiner P, Choi IJ, Kook MC, Kim YI, Cho SJ, Lee JY, Kim CG, Park B, Nam BH, Bae SE, Choi KD, Choe J, Kim SO, Na HK, Choi JY, Ahn JY, Jung KW, Lee J, Kim DH, Chang HS, Song HJ, Lee GH, Jung HY, Seta T, Takahashi Y, Noguchi Y, Shikata S, Sakai T, Sakai K, Yamashita Y, Nakayama T, Leja M, Park JY, Murillo R, Liepniece-karele I, Isajevs S, Kikuste I, Rudzite D, Krike P, Parshutin S, Polaka I, Kirsners A, Santare D, Folkmanis V, Daugule I, Plummer M, Herrero R, Tsukamoto T, Nakagawa M, Kiriyama Y, Toyoda T, Cao X, Corral JE, Mera R, Dye CW, Morgan DR, Lee YC, Lin JT, Garcia Martin R, Matia Cubillo A, Lee SH, Park JM, Han YM, Ko WJ, Hahm KB, Leontiadis GI, Ford AC, Ichinose M, Sugano K, Jeong M, Park JM, Han YM, Park KY, Lee DH, Yoo JH, Cho JY, Hahm KB, Bang CS, Baik GH, Shin IS, Kim JB, Suk KT, Yoon JH, Kim YS, Kim DJ * Helicobacter pylori Eradication for Prevention of Metachronous Recurrence after Endoscopic Resection of Early Gastric Cancer(682 views) N Engl J Med (ISSN: 0028-4793, 0028-4793linking, 1533-4406electronic), 2015 Jun; 30642104201566393291: 749-756. Impact Factor:59.558 ViewExport to BibTeXExport to EndNote