Institute of Biostructures and Bioimaging, CNR, Naples, Italy.
CIRPEB, University of Naples Federico II, Naples, Italy.
Institute of Crystallography, CNR, Bari, Italy.
CESTEV, University of Naples Federico II, Naples, Italy.
References: Cao Y., Liguoro A., Iommelli F., Salvatore M., Pedone C., Capasso D., et al. (2020). Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells. Cell 182 73.e16–84.e16. 10.1016/j.cell.2020.05.025 - DOI - PMC - PubMed
Chang A., Masante C., Buchholz U. J., Dutch R. E. (2012). Human metapneumovirus (HMPV) binding and infection are mediated by interactions between the HMPV fusion protein and heparan sulfate. J. Virol. 86 3230–3243. 10.1128/JVI.06706-11 - DOI - PMC - PubMed
Chi X., Graham B. S., Saviano M., Zaccaro L., McLellan J. S. (2020). A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science 22:eabc6952. 10.1126/science.abc6952 - DOI - PMC - PubMed
Comegna D., Zannetti A., Del Gatto A., De Paola I., Russo L., Di Gaetano S., et al. (2017). Chemical modification for proteolytic stabilization of the selective alphavbeta3 Integrin RGDechi peptide: in vitro and in vivo activities on malignant melanoma cells. J. Med. Chem. 60 9874–9884. 10.1021/acs.jmedchem.7b01590 - DOI - PubMed
Del Gatto A., Zaccaro L., Grieco P., Novellino E., Zannetti A., Del Vecchio S., et al. (2006). Novel and selective αvβ3 receptor peptide antagonist: design. Synthesis, and biological behavior. J. Med. Chem. 49 3416–3420. 10.1021/jm060233m - DOI - PubMed
Di Gaetano S., Bedini E., Landolfi A., Pedone E., Pirone L., Saviano M., et al. (2019). Synthesis of diglycosylated (di)sulfides and comparative evaluation of their antiproliferative effect against tumor cell lines: a focus on the nature of sugar-recognizing mediators involved. Carbohydr. Res. 482:107740. 10.1016/j.carres.2019.107740 - DOI - PubMed
Di Gaetano S., Del Gatto A., Pirone L., Comegna D., Zaccaro L., Saviano M., et al. (2018). A selective avb5 integrin antagonist hidden into the anophelin family protein CE5 form the malaria vector Anopheles gambiae. Pept. Sci. 110:e24054 10.1002/pep2.24054 - DOI
Fang L., Karakiulakis G., Roth M. (2020). Antihypertensive drugs and risk of COVID-19? Lancet Respir Med. 8 e32–e33. 10.1016/S2213-2600(20)30159-4 - DOI - PMC - PubMed
Fantini J., Di Scala C., Chahinian H., Yahi N. (2020). Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int. J. Antimicrob. Agents 55:105960. 10.1016/j.ijantimicag.2020.105960 - DOI - PMC - PubMed
Farina B., de Paola I., Russo L., Capasso D., Liguoro A., Del Gatto A., et al. (2016). A combined NMR and computational approach to determine the RGDechi-hCit-αvβ3 Integrin recognition mode in isolated cell membranes. Chemistry 22 681–693. 10.1002/chem.201503126 - DOI - PubMed
Gao S., Du J., Zhou J., Chang H., Xie Q. (2008). Integrin activation and viral infection. Virol. Sin. 23 1–7. 10.1007/s12250-008-2886-2 - DOI
Ibrahim I. M., Abdelmalek D. H., Elshahat M. E., Elfiky A. A. (2020). COVID-19 spike-host cell receptor GRP78 binding site prediction. J. Infect. 80 554–562. 10.1016/j.jinf.2020.02.026 - DOI - PMC - PubMed
Jeffers S. A., Tusell S. M., Gillim-Ross L., Hemmila E. M., Achenbach J. E., Babcock G. J., et al. (2004). CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc. Natl. Acad. Sci. U.S.A. 101 15748–15753. 10.1073/pnas.0403812101 - DOI - PMC - PubMed
Kanduca D., Shoenfeldb Y. (2020). On the molecular determinants the SARS-CoV-2 attack. Clin. Immunol 215:108426. 10.1016/j.clim.2020.108426 - DOI - PMC - PubMed
Li F. (2016). Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol. 3 237–261. 10.1146/annurev-virology-110615-042301 - DOI - PMC - PubMed
Matrosovich M., Herrler G., Klenk H. D. (2015). Sialic acid receptors of viruses. Top Curr Chem. 367 1–28. 10.1007/128_2013_466 - DOI - PMC - PubMed
Peng G., Xu L., Lin Y. L., Chen L., Pasquarella J. R., Holmes K. V., et al. (2012). Crystal structure of bovine coronavirus spike protein lectin domain. J. Biol. Chem. 287 41931–41938. 10.1074/jbc.M112.418210 - DOI - PMC - PubMed
Tai W., He L., Zhang X., Pu J., Voronin D., Jiang S., et al. (2020). Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol. Immunol. 17 613–620. 10.1038/s41423-020-0400-4 - DOI - PMC - PubMed
Teoh C. M., Tan S. S., Tran T. (2015). Integrins as therapeutic targets for respiratory diseases. Curr. Mol. Med. 15 714–734. 10.2174/1566524015666150921105339 - DOI - PMC - PubMed
Tresoldi I., Sangiuolo C. F., Manzari V., Modesti A. (2020). SARS-COV-2 and infectivity: possible increase in infectivity associated to integrin motif expression. J. Med. Virol. 10:10.1002/jmv.25831. 10.1002/jmv.25831 - DOI - PMC - PubMed
Walls A. C., Park Y. J., Tortorici M. A., Wall A., McGuire A. T., Veesler D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181 281.e6–292.e6. 10.1016/j.cell.2020.02.058 - DOI - PMC - PubMed
Wei Y., Zhang Y., Cai H., Mirza A. M., Iorio R. M., Peeples M. E., et al. (2014). Roles of the putative integrin-binding motif of the human metapneumovirus fusion (F) protein in cell-cell fusion, viral infectivity, and pathogenesis. J. Virol. 88 4338–4352. 10.1128/jvi.03491-13 - DOI - PMC - PubMed
Wrapp D., Wang N., Corbett K. S., Goldsmith J. A., Hsieh C. L., Abiona O., et al. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367 1260–1263. 10.1126/science.abb2507 - DOI - PMC - PubMed
Yan S., Haixia S., Xianzhang B., Guohui W. (2020). An evolutionary RGD motif in the spike protein of SARS-CoV-2 may serve as a potential high risk factor for virus infection? [Preprint]. 10.20944/preprints202002.0447.v1 - DOI - PubMed
Zhang L., Jackson C. B., Mou H., Ojha A., Rangarajan E. S., Izard T., et al. (2020). The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. bioRxiv [Preprint]. 10.1101/2020.06.12.148726 - DOI - PubMed
A Multi-Targeting Approach to Fight SARS-CoV-2 Attachment
The public health has declared an international state of emergency due to the spread of a new coronavirus (SARS-CoV-2) representing a real pandemic threat so that to find potential therapeutic agents is a dire need.
To this aim, the SARS-CoV-2 spike (S) glycoprotein represents a crucial target for vaccines, therapeutic antibodies, and diagnostics.
Since virus binding to ACE-2 alone could not be sufficient to justify such severe infection, in order to facilitate medical countermeasure development and to search for new targets, two further regions of S protein have been taken into consideration here.
One is represented by the recently identified ganglioside binding site, exactly localized in our study in the galectin-like domain, and the other one by the putative integrin binding sites contained in the RBD.
We propose that a cooperating therapy using inhibitors against multiple targets altogether i.e., ACE2, integrins and sugars could be definitely more effective.
A Multi-Targeting Approach to Fight SARS-CoV-2 Attachment