Deep Myometrial Infiltration of Endometrial Cancer on MRI: A Radiomics-Powered Machine Learning Pilot Study(321 views) Stanzione A, Cuocolo R, Del Grosso R, Nardiello A, Romeo V, Travaglino A, Raffone A, Bifulco G, Zullo F, Insabato L, Maurea S, Mainenti PP
Keywords: Deep Myometrial Invasion, Endometrial Cancer, Machine Learning, Radiomics, Endometrial Neoplasms Diagnostic Imaging
, Female
, Humans
, Magnetic Resonance Imaging
, Pilot Projects
, Retrospective Studies,
Affiliations: *** IBB - CNR ***
Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy.
Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples "Federico II", Italy.
Institute of Biostructures and Bioimaging of the National Research Council (CNR), Naples, Italy.
References: Not available.
Deep Myometrial Infiltration of Endometrial Cancer on MRI: A Radiomics-Powered Machine Learning Pilot Study
RATIONALE AND OBJECTIVES: To evaluate an MRI radiomics-powered machine learning (ML) model's performance for the identification of deep myometrial invasion (DMI) in endometrial cancer (EC) patients and explore its clinical applicability. MATERIALS AND METHODS: Preoperative MRI scans of EC patients were retrospectively selected. Three radiologists performed whole-lesion segmentation on T2-weighted images for feature extraction. Feature robustness was tested before randomly splitting the population in training and test sets (80/20% proportion). A multistep feature selection was applied to the first, excluding noninformative, low variance features and redundant, highly-intercorrelated ones. A Random Forest wrapper was used to identify the most informative among the remaining. An ensemble of J48 decision trees was tuned and finalized in the training set using 10-fold cross-validation, and then assessed on the test set. A radiologist evaluated all MRI scans without and with the aid of ML to detect the presence of DMI. McNemars's test was employed to compare the two readings. RESULTS: Of the 54 patients included, 17 had DMI. In all, 1132 features were extracted. After feature selection, the Random Forest wrapper identified the three most informative which were used for ML training. The classifier reached an accuracy of 86% and 91% and areas under the Receiver Operating Characteristic curve of 0.92 and 0.94 in the cross-validation and final testing, respectively. The radiologist performance increased from 82% to 100% when using ML (p = 0.48). CONCLUSION: We proved the feasibility of a radiomics-powered ML model for DMI detection on MR T2-w images that might help radiologists to increase their performance.
Deep Myometrial Infiltration of Endometrial Cancer on MRI: A Radiomics-Powered Machine Learning Pilot Study
No results.
Deep Myometrial Infiltration of Endometrial Cancer on MRI: A Radiomics-Powered Machine Learning Pilot Study
Antonini A, Vitale C, Barone P, Cilia R, Righini A, Bonuccelli U, Abbruzzese G, Ramat S, Petrone A, Quatrale R, Marconi R, Ceravolo R, Stefani A, Lopiano L, Zappia M, Capus L, Morgante L, Tamma F, Tinazzi M, Colosimo C, Guerra UP, Valzania F, Fagioli G, Distefano A, Bagnato A, Feggi L, Anna S, Maria Teresa Rosaria De Cr, Nobili F, Mazzuca N, Baldari S, Eleopra R, Bestetti A, Benti R, Varrone A, Volterrani D, Massa R, Stocchi F, Schillaci O, Dore F, Zibetti M, Castellano G, Battista SG, Giorgetti G * The relationship between cerebral vascular disease and parkinsonism: The VADO study(880 views) Parkinsonism Relat D (ISSN: 1353-8020, 1873-5126, 1873-5126electronic), 2012; 18(6): 775-780. Impact Factor:3.274 ViewExport to BibTeXExport to EndNote
Malvindi MA, Greco A, Conversano F, Figuerola A, Corti M, Bonora M, Lascialfari A, Doumari HA, Moscardini M, Cingolani R, Gigli G, Casciaro S, Pellegrino T, Ragusa A * MR Contrast Agents(494 views) Small Animal Imaging, 2011 Jul 8; 21(13): 2548-2555. Impact Factor:1.784 ViewExport to BibTeXExport to EndNote
Ntziachristos V, Cuénod CA, Fournier L, Balvay D, Pradel C, Siauve N, Clement O, Jouannot E, Lucidarme O, Vecchio SD, Salvatore M, Law B, Tung C-H, Jain RK, Fukumura D, Munn LL, Brown EB, Schellenberger E, Montet X, Weissleder R, Clerck ND, Postnov A * Tumor Imaging(674 views) Textbook Of In Vivo Imaging In Vertebrates (ISSN: 9780-4700), 2007 Jul 16; 1: 277-309. Impact Factor:1.148 ViewExport to BibTeXExport to EndNote
Hesse B, Tagil K, Cuocolo A, Anagnostopoulos C, Bardies M, Bax J, Bengel F, Busemann Sokole E, Davies G, Dondi M, Edenbrandt L, Franken P, Kjaer A, Knuuti J, Lassmann M, Ljungberg M, Marcassa C, Marie PY, Mckiddie F, O'connor M, Prvuolovich E, Underwood R * 3. 0 T perfusion MR imaging(1335 views) Rivista Di Neuroradiologia (ISSN: 1120-9976), 2004; 17(6): 807-812. Impact Factor:0.023 ViewExport to BibTeXExport to EndNote