The antimicrobial peptide Temporin L impairs E. coli cell division by interacting with FtsZ and the divisome complex(99 views) Di Somma A, Avitabile C, Cirillo A, Moretta A, Merlino A, Paduano L, Duilio A, Romanelli A
Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126 Napoli, Italy
National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Roma, Italy.
Institute of Biostructures and Bioimaging (CNR), via Mezzocannone 16, 80134 Napoli, Italy.
Department of Sciences, University of Basilicata, Potenza, Italy.
Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milan, Italy. Electronic address: alessandra.romanelli@unimi.it.
References: Not available.
The antimicrobial peptide Temporin L impairs E. coli cell division by interacting with FtsZ and the divisome complex
BACKGROUND: The comprehension of the mechanism of action of antimicrobial peptides is fundamental for the design of new antibiotics. Studies performed looking at the interaction of peptides with bacterial cells offer a faithful picture of what really happens in nature. METHODS: In this work we focused on the interaction of the peptide Temporin L with E. coli cells, using a variety of biochemical and biophysical techniques that include: functional proteomics, docking, optical microscopy, TEM, DLS, SANS, fluorescence. RESULTS: We identified bacterial proteins specifically interacting with the peptides that belong to the divisome machinery; our data suggest that the GTPase FtsZ is the specific peptide target. Docking experiments supported the FtsZ-TL interaction; binding and enzymatic assays using recombinant FtsZ confirmed this hypothesis and revealed a competitive inhibition mechanism. Optical microscopy and TEM measurements demonstrated that, upon incubation with the peptide, bacterial cells are unable to divide forming long necklace-like cell filaments. Dynamic light scattering studies and Small Angle Neutron Scattering experiments performed on treated and untreated bacterial cells, indicated a change at the nanoscale level of the bacterial membrane. CONCLUSIONS: The peptide temporin L acts by a non-membrane-lytic mechanism of action, inhibiting the divisome machinery. GENERAL SIGNIFICANCE: Identification of targets of antimicrobial peptides is pivotal to the tailored design of new antimicrobials.
The antimicrobial peptide Temporin L impairs E. coli cell division by interacting with FtsZ and the divisome complex
Kim YH, Shin SW, Pellicano R, Fagoonee S, Choi IJ, Kim YI, Park B, Choi JM, Kim SG, Choi J, Park JY, Oh S, Yang HJ, Lim JH, Im JP, Kim JS, Jung HC, Ponzetto A, Figura N, Malfertheiner P, Choi IJ, Kook MC, Kim YI, Cho SJ, Lee JY, Kim CG, Park B, Nam BH, Bae SE, Choi KD, Choe J, Kim SO, Na HK, Choi JY, Ahn JY, Jung KW, Lee J, Kim DH, Chang HS, Song HJ, Lee GH, Jung HY, Seta T, Takahashi Y, Noguchi Y, Shikata S, Sakai T, Sakai K, Yamashita Y, Nakayama T, Leja M, Park JY, Murillo R, Liepniece-karele I, Isajevs S, Kikuste I, Rudzite D, Krike P, Parshutin S, Polaka I, Kirsners A, Santare D, Folkmanis V, Daugule I, Plummer M, Herrero R, Tsukamoto T, Nakagawa M, Kiriyama Y, Toyoda T, Cao X, Corral JE, Mera R, Dye CW, Morgan DR, Lee YC, Lin JT, Garcia Martin R, Matia Cubillo A, Lee SH, Park JM, Han YM, Ko WJ, Hahm KB, Leontiadis GI, Ford AC, Ichinose M, Sugano K, Jeong M, Park JM, Han YM, Park KY, Lee DH, Yoo JH, Cho JY, Hahm KB, Bang CS, Baik GH, Shin IS, Kim JB, Suk KT, Yoon JH, Kim YS, Kim DJ * Helicobacter pylori Eradication for Prevention of Metachronous Recurrence after Endoscopic Resection of Early Gastric Cancer(513 views) N Engl J Med (ISSN: 0028-4793, 0028-4793linking, 1533-4406electronic), 2015 Jun; 30642104201566393291: 749-756. Impact Factor:59.558 ViewExport to BibTeXExport to EndNote