Handcrafted MRI radiomics and machine learning: Classification of indeterminate solid adrenal lesions(435 views) Stanzione A, Cuocolo R, Verde F, Galatola R, Romeo V, Mainenti PP, Aprea G, Guadagno E, Del Basso De Caro M, Maurea S
Keywords: Adrenal Glands, Chemical Shift Imaging, Machine Learning, Magnetic Resonance Imaging, Neoplasms, Adenoma
, Humans
, Retrospective Studies
, Support Vector Machine,
Affiliations: *** IBB - CNR ***
Department of Advanced Biomedical Sciences, University of Naples "Federico II", Italy.
Augmented Reality for Health Monitoring Laboratory (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Italy.
Institute of Biostructures and Bioimaging of the National Research Council (CNR), Italy.
Department of Clinical Medicine and Surgery, University of Naples "Federico II", Italy.
References: Not available.
Handcrafted MRI radiomics and machine learning: Classification of indeterminate solid adrenal lesions
PURPOSE: To assess a radiomic machine learning (ML) model in classifying solid adrenal lesions (ALs) without fat signal drop on chemical shift (CS) as benign or malignant. METHOD: 55 indeterminate ALs (21 lipid poor adenomas, 15 benign pheocromocytomas, 1 oncocytoma, 12 metastases, 6 primary tumors) showing no fat signal drop on CS were retrospectively included. Manual 3D segmentation on T2-weighted and CS images was performed for subsequent radiomic feature extraction. After feature stability testing and an 80-20% train-test split, the train set was balanced via oversampling. Following a multi-step feature selection, an Extra Trees model was tuned with 5-fold stratified cross-validation in the train set and then tested on the hold-out test set. RESULTS: A total of 3396 features were extracted from each AL, of which 133 resulted unstable while none had low variance (< 0.01). Highly correlated (r > 0.8) features were also excluded, leaving 440 parameters. Among these, Support Vector Machine 5-fold stratified cross-validated recursive feature elimination selected a subset of 6 features. ML obtained a cross-validation accuracy of 0.94 on the train and 0.91 on the test sets. Precision, recall and F1 score were respectively 0.92, 0.91 and 0.91. CONCLUSIONS: Our MRI handcrafted radiomics and ML pipeline proved useful to characterize benign and malignant solid indeterminate adrenal lesions.
Handcrafted MRI radiomics and machine learning: Classification of indeterminate solid adrenal lesions
No results.
Handcrafted MRI radiomics and machine learning: Classification of indeterminate solid adrenal lesions
Kim YH, Shin SW, Pellicano R, Fagoonee S, Choi IJ, Kim YI, Park B, Choi JM, Kim SG, Choi J, Park JY, Oh S, Yang HJ, Lim JH, Im JP, Kim JS, Jung HC, Ponzetto A, Figura N, Malfertheiner P, Choi IJ, Kook MC, Kim YI, Cho SJ, Lee JY, Kim CG, Park B, Nam BH, Bae SE, Choi KD, Choe J, Kim SO, Na HK, Choi JY, Ahn JY, Jung KW, Lee J, Kim DH, Chang HS, Song HJ, Lee GH, Jung HY, Seta T, Takahashi Y, Noguchi Y, Shikata S, Sakai T, Sakai K, Yamashita Y, Nakayama T, Leja M, Park JY, Murillo R, Liepniece-karele I, Isajevs S, Kikuste I, Rudzite D, Krike P, Parshutin S, Polaka I, Kirsners A, Santare D, Folkmanis V, Daugule I, Plummer M, Herrero R, Tsukamoto T, Nakagawa M, Kiriyama Y, Toyoda T, Cao X, Corral JE, Mera R, Dye CW, Morgan DR, Lee YC, Lin JT, Garcia Martin R, Matia Cubillo A, Lee SH, Park JM, Han YM, Ko WJ, Hahm KB, Leontiadis GI, Ford AC, Ichinose M, Sugano K, Jeong M, Park JM, Han YM, Park KY, Lee DH, Yoo JH, Cho JY, Hahm KB, Bang CS, Baik GH, Shin IS, Kim JB, Suk KT, Yoon JH, Kim YS, Kim DJ * Helicobacter pylori Eradication for Prevention of Metachronous Recurrence after Endoscopic Resection of Early Gastric Cancer(683 views) N Engl J Med (ISSN: 0028-4793, 0028-4793linking, 1533-4406electronic), 2015 Jun; 30642104201566393291: 749-756. Impact Factor:59.558 ViewExport to BibTeXExport to EndNote
Antonini A, Vitale C, Barone P, Cilia R, Righini A, Bonuccelli U, Abbruzzese G, Ramat S, Petrone A, Quatrale R, Marconi R, Ceravolo R, Stefani A, Lopiano L, Zappia M, Capus L, Morgante L, Tamma F, Tinazzi M, Colosimo C, Guerra UP, Valzania F, Fagioli G, Distefano A, Bagnato A, Feggi L, Anna S, Maria Teresa Rosaria De Cr, Nobili F, Mazzuca N, Baldari S, Eleopra R, Bestetti A, Benti R, Varrone A, Volterrani D, Massa R, Stocchi F, Schillaci O, Dore F, Zibetti M, Castellano G, Battista SG, Giorgetti G * The relationship between cerebral vascular disease and parkinsonism: The VADO study(674 views) Parkinsonism Relat D (ISSN: 1353-8020, 1873-5126, 1873-5126electronic), 2012; 18(6): 775-780. Impact Factor:3.274 ViewExport to BibTeXExport to EndNote
Malvindi MA, Greco A, Conversano F, Figuerola A, Corti M, Bonora M, Lascialfari A, Doumari HA, Moscardini M, Cingolani R, Gigli G, Casciaro S, Pellegrino T, Ragusa A * MR Contrast Agents(429 views) Small Animal Imaging, 2011 Jul 8; 21(13): 2548-2555. Impact Factor:1.784 ViewExport to BibTeXExport to EndNote
Ntziachristos V, Cuénod CA, Fournier L, Balvay D, Pradel C, Siauve N, Clement O, Jouannot E, Lucidarme O, Vecchio SD, Salvatore M, Law B, Tung C-H, Jain RK, Fukumura D, Munn LL, Brown EB, Schellenberger E, Montet X, Weissleder R, Clerck ND, Postnov A * Tumor Imaging(471 views) Textbook Of In Vivo Imaging In Vertebrates (ISSN: 9780-4700), 2007 Jul 16; 1: 277-309. Impact Factor:1.148 ViewExport to BibTeXExport to EndNote
Hesse B, Tagil K, Cuocolo A, Anagnostopoulos C, Bardies M, Bax J, Bengel F, Busemann Sokole E, Davies G, Dondi M, Edenbrandt L, Franken P, Kjaer A, Knuuti J, Lassmann M, Ljungberg M, Marcassa C, Marie PY, Mckiddie F, O'connor M, Prvuolovich E, Underwood R * 3. 0 T perfusion MR imaging(1039 views) Rivista Di Neuroradiologia (ISSN: 1120-9976), 2004; 17(6): 807-812. Impact Factor:0.023 ViewExport to BibTeXExport to EndNote
Testino G, Leone S, Fagoonee S, Del Bas JM, Rodriguez B, Puiggros F, Marine S, Rodriguez MA, Morina D, Armengol L, Caimari A, Arola L, Cimini FA, Barchetta I, Carotti S, Bertoccini L, Baroni MG, Vespasiani-gentilucci U, Cavallo MG, Morini S, Nelson JE, Roth CL, Wilson LA, Yates KP, Aouizerat B, Morgan-stevenson V, Whalen E, Hoofnagle A, Mason M, Gersuk V, Yeh MM, Kowdley KV, Lee SM, Jun DW, Cho YK, Jang KS, Kucukazman M, Ata N, Dal K, Yeniova AO, Kefeli A, Basyigit S, Aktas B, Akin KO, Agladioglu K, Ure OS, Topal F, Nazligul Y, Beyan E, Ertugrul DT, Catena C, Cosma C, Camozzi V, Plebani M, Ermani M, Sechi LA, Fallo F, Goto Y, Ray MB, Mendenhall CL, French SW, Gartside PS Serum vitamin A deficiency and increased intrahepatic expression of cytokeratin antigen in alcoholic liver disease(727 views) Hepatology (ISSN: 1827-1669electronic, 0026-4806linking), 1988 Sep; 83120693611123109(5): 1019-1026. Impact Factor:0.913 ViewExport to BibTeXExport to EndNote
467 Records (443 excluding Abstracts). Total impact factor: 1511.186 (1452.733 excluding Abstracts). Total 5 year impact factor: 1563.613 (1500.205 excluding Abstracts).