Synthesis, Characterization, and Study of Catalytic Activity of Chiral Cu(II) and Ni(II) Salen Complexes in the α-Amino Acid C-α Alkylation Reaction(6 views) Tovmasyan AS, Mkrtchyan AF, Khachatryan HN, Hayrapetyan MV, Hakobyan RM, Poghosyan AS, Tsaturyan AH, Minasyan EV, Maleev VI, Larionov VA, Ayvazyan AG, Shibata N, Roviello GN, Saghyan AS
by Anna S. Tovmasyan 1,Anna F. Mkrtchyan 1,2,*,Hamlet N. Khachatryan 2,Mary V. Hayrapetyan 2,Robert M. Hakobyan 3,Artavazd S. Poghosyan 1,Avetis H. Tsaturyan 1,2,Ela V. Minasyan 1,2,Victor I. Maleev 4,Vladimir A. Larionov 4,5,Armen G. Ayvazyan 3,Norio Shibata 6,Giovanni N. Roviello 7,* andAshot S. Saghyan 1,2,**Authors to whom correspondence should be addressed.
References: 1. Barker, R.E.; Guo, L.; Mota, C.J.; North, M.; Ozorio, L.P.; Pointer, W.; Walberton, S.; Wu, X. General Approach to Silica-Supported Salens and Salophens and Their Use as Catalysts for the Synthesis of Cyclic Carbonates from Epoxides and Carbon
Dioxide. J. Org. Chem. 2022, 87, 16410–16423. https://doi.org/10.1021/acs.joc.2c02104.
2. Jos, S.; Suja, N.R. Chiral Schiff base ligands of salicylaldehyde: A versatile tool for medical applications and organic synthesisA review. Inorg. Chim. Acta 2023, 547, 121323. https://doi.org/10.1016/j.ica.2022.121323.
3. Erxleben, A. Transition metal salen complexes in bioinorganic and medicinal chemistry. Inorg. Chim. Acta 2018, 472, 40–57.
https://doi.org/10.1016/j.ica.2017.06.060.
4. Yuan, Y.-C.; Mellah, M.; Schulz, E.; David, O.R.P. Making Chiral Salen Complexes Work with Organocatalysts. Chem. Rev. 2022,
8. Kurahashi, T.; Fujii, H. One-Electron Oxidation of Electronically Diverse Manganese(III) and Nickel(II) Salen Complexes: Transition from Localized to Delocalized Mixed-Valence Ligand Radicals. J. Am. Chem. Soc. 2011, 133, 8307–8316.
E.M. Synthesis, DFT Calculations, Antiproliferative, Bactericidal Activity and Molecular Docking of Novel Mixed-Ligand
Salen/8-Hydroxyquinoline Metal Complexes. Molecules 2021, 26, 4725. https://doi.org/10.3390/molecules26164725.
10. Tomczyk, D.; Seliger, P.; Bukowski, W.; Bester, K. The Influence of Electrolyte Type on Kinetics of Redox Processes in the Polymer Films of Ni(II) Salen-Type Complexes. Molecules 2022, 27, 1812. https://doi.org/10.3390/molecules27061812.
11. Storr, T.; Mukherjee, R. Preface for the Forum on Applications of Metal Complexes with Ligand-Centered Radicals. Inorg. Chem.
20. Awasthi, A.; Leach, I.F.; Engbers, S.; Kumar, R.; Eerlapally, R.; Gupta, S.; Klein, J.E.M.N.; Draksharapu, A. Formation and Reactivity of a Fleeting Ni III Bisphenoxyl Diradical Species. Angew. Chem. 2022, 134, e202211345.
21. Klarner, M.; Blach, P.; Wittkaemper, H.; Jonge, N.; Papp, C.; Kempe, R. Key Parameters for the Synthesis of Active and Selective
Nanostructured 3d Metal Catalysts Starting from Coordination Compounds–Case Study: Nickel Mediated Reductive Amination. ChemCatChem 2021, 13, 3257–3261. https://doi.org/10.1002/cctc.202100562.
22. Hahn, G.; Kunnas, P.; de Jonge, N.; Kempe, R. General synthesis of primary amines via reductive amination employing a reusable nickel catalyst. Nat. Catal. 2019, 2, 71–77. https://doi.org/10.1038/s41929-018-0202-6.
23. Belokon, Y.N.; North, M.; Kublitski, V.S.; Ikonnikov, N.S.; Krasik, P.E.; Maleev, V.I. Chiral salen-metal complexes as novel catalysts for asymmetric phase transfer alkylations. Tetrahedron Lett. 1999, 40, 6105–6108. https://doi.org/10.1016/s0040-
24. Belokon, Y.N.; North, M.; Churkina, T.D.; Ikonnikov, N.S.; Maleev, V.I. Chiral salen–metal complexes as novel catalysts for the
asymmetric synthesis of α-amino acids under phase transfer catalysis conditions. Tetrahedron 2001, 57, 2491–2498.
25. Belokon’, Y.N.; Bhave, D.; D’Addario, D.; Groaz, E.; Maleev, V.; North, M.; Pertrosyan, A. Catalytic, asymmetric synthesis of
α,α-disubstituted amino acids. Tetrahedron Lett. 2003, 44, 2045–2048. https://doi.org/10.1016/s0040-4039(03)00170-9.
26. Belokon, Y.N.; Bhave, D.; D’Addario, D.; Groaz, E.; North, M.; Tagliazucca, V. Copper(II)salen catalysed, asymmetric synthesis
of α,α-disubstituted amino acids. Tetrahedron 2004, 60, 1849–1861. https://doi.org/10.1016/j.tet.2003.12.031.
27. Maruoka, K. Design of Maruoka catalysts for asymmetric Phase-Transfer catalysis. Tetrahedron Lett. 2022, 110, 154159.
28. Corey, E.J.; Xu, F.; Noe, M.C. A Rational Approach to Catalytic Enantioselective Enolate Alkylation Using a Structurally Rigidified and Defined Chiral Quaternary Ammonium Salt under Phase Transfer Conditions. J. Am. Chem. Soc. 1997, 119, 12414–
30. Belokon, Y.N.; Fuentes, J.; North, M.; Steed, J.W. Influence of the metal and chiral diamine on metal(II)salen catalysed, asymmetric synthesis of α-methyl α-amino acids. Tetrahedron 2004, 60, 3191–3204. https://doi.org/10.1016/j.tet.2004.02.025.
31. Islam, S.M.; Roy, A.S.; Mondal, P.; Mobarok, M.; Roy, B.; Salam, N.; Paul, S.; Mondal, S. Olefin epoxidation with tert-butyl
hydroperoxide catalyzed by functionalized polymer-supported copper(II) Schiff base complex. Mon. Chem.. 2012, 143, 815–823.
46. A. C. T. North, D. C. Phillips and F. S. Mathews, A Acta Cryst. (1968), A24, 351-359.
Synthesis, Characterization, and Study of Catalytic Activity of Chiral Cu(II) and Ni(II) Salen Complexes in the α-Amino Acid C-α Alkylation Reaction
A new family of Cu(II) and Ni(II) salen complexes was synthesized and fully characterized through various physicochemical methods. Their catalytic activity was evaluated in the phase transfer Сα-alkylation reaction of the Schiff bases of D,L-alanine ester and benzaldehyde derivatives. It was found that the introduction of a chlorine atom into the ortho- and para-positions of the phenyl ring of the substrate resulted in an increase in both the chemical yield and the asymmetric induction (ee 66–98%). The highest enantiomeric excess was achieved in the case of a Cu(II) salen complex based on (S,S)-cyclohexanediamine and salicylaldehyde at −20 °C. The occurrence of a bulky substituent in the ligand present in the complexes led to a drastic decrease in ee and chemical yield. For instance, the introduction of bulky substituents at positions 3 and 5 of the phenyl ring of the catalyst resulted in a complete loss of the stereoselectivity control in the alkylation reaction.
Synthesis, Characterization, and Study of Catalytic Activity of Chiral Cu(II) and Ni(II) Salen Complexes in the α-Amino Acid C-α Alkylation Reaction
Kállay C, Dávid A, Timári S, Nagy EM, Sanna D, Garribba E, Micera G, De Bona P, Pappalardo G, Rizzarelli E, Sóvágó I * Copper(II) complexes of rat amylin fragments(357 views) Dalton T (ISSN: 1477-9234, 1477-9226, 1477-9234electronic), 2011 Oct 14; 40(38): 9711-9721. Impact Factor:3.838 ViewExport to BibTeXExport to EndNote