Movement Asymmetries: from their Molecular Origin to the Analysis of Movement Asymmetries in Athletes(391 views) Egoyan A, Parulava G, Gilhen-baker M, Baker S, Roviello GN
Keywords: Myosin, Athletes, Movement Asymmetry, Sports, Physical Rehabilitation, Genetics, Functional Movement Screen, Exercise Genomics
Affiliations: *** IBB - CNR ***
Alexander Egoyan1, Giorgi Parulava1, Steven Baker2, Melinda Gilhen-Baker1,3, and Giovanni N. Roviello4,* 41 Georgian State Teaching University of Physical Education and Sport, 49 Chavchavadze Avenue, 0162, Tbi-5 lisi, Georgia; alexander.egoyan@sportuni.ge ; giorgi.parulava@sportuni.ge ; mgbaker@me.com 62 Compete Physiotherapy Ltd, Unit 1, Bridge Mill, Cowan Bridge, Carnforth, LA6 2HS, United Kingdom; 7 steve@competephysio.co.uk 83 Carleton Climate Commons, 1821 Dunton Tower, Carleton University 1125 Colonel by Drive Ottawa, ON, 9 K1S 5B6, Canada; mgbaker@me.com 104 Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca 11 site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy; giovanni.roviello@cnr.it 1213* Correspondence: giovanni.roviello@cnr.it; Tel.: +390812203415
References: 1. Ocklenburg, S.; Mundorf, A. Symmetry and Asymmetry in Biological Structures. Proc Natl Acad Sci USA 2022 119(28), e2204881119. DOI:10.1073/pnas.2204881119. Epub 2022 Jul 5. PMID: 35787037; PMCID: PMC9282387.
2. Mundorf, A.; Peterburs, J.; Ocklenburg, S. Asymmetry in the Central Nervous System: A Clinical Neuroscience Perspective. Front. Syst. Neurosci. 2021, 15, 733898.
3. Paillard, T. Asymmetry of Movement and Postural Balance and Underlying Functions in Humans. Symmetry 2023, 15(3), 759. DOI:10.3390/sym15030759.
4. Kadri, M.A.; Noé, F.; Maitre, J., Maffulli, N.; Paillard, T. Effects of Limb Dominance on Postural Balance in Sportsmen Practicing Symmetric and Asymmetric Sports: A Pilot Study. Symmetry 2021, 13(11), 2199. DOI:10.3390/sym13112199.
5. Afonso, J.; Peña, J.; Sá, M.; Virgile, A.; García-de-Alcaraz, A.; Bishop, C. Why Sports Should Embrace Bilateral Asymmetry: A Narrative Review. Symmetry 2022, 14(10), 1993. DOI:10.3390/sym14101993.
6. Bishop, C.; Turner, A.; Read, P. Training Methods and Considerations for Practitioners to Reduce Inter-Limb Asymmetries. Strength Cond J 2018, 40, 40-46.
7. Carpes, F.P.; Mota, C.B.; Faria, I.E. On the Bilateral Asymmetry during Running and Cycling-a Review Considering Leg Preference. Phys Ther Sport. 2010, 11(4), 136-42. DOI:10.1016/j.ptsp.2010.06.005..
8. Fort-Vanmeerhaeghe, A.; Bishop, C.; Buscà, B.; Aguilera-Castells, J.; Vicens-Bordas, J.; Gonzalo-Skok, O. Inter-Limb Asymmetries are Associated with Decrements in Physical Performance in Youth Elite Team Sports Athletes. PLoS One 2020, 15(3), e0229440. DOI:10.1371/journal.pone.0229440.
9. Fort-Vanmeerhaeghe, A.; Gual, G.; Romero-Rodriguez, D.; Unnitha. V. Lower Limb Neuromuscular Asymmetry in Volleyball and Basketball Players. J Human Kinet 2016, 50, 135-144.
10. Hart, N.; Nimphius, S.; Spiteri, T.; Newton, R. Leg Strength and Lean Mass Symmetry Influences Kicking Performance in Australian Football. J Sports Sci Med 2014, 13, 157-165.
11. Bishop, C.; Turner, A.; Gonzalo-Skok, O.; Read, P. Inter-Limb Asymmetry during Rehabilitation: Understanding Formulas and Monitoring the “Magnitude” and “Direction”. Aspetar 2020 Mar, 18-22.
12. Noyes, F.; Barber, S.; Mangine, R. Abnormal Lower Limb Symmetry Determined by Function Hop Tests after Anterior Cruciate Ligament Rupture. Amer J Sports Med 1991, 19, 513-518.
13. Rohman, E.; Steubs, J.; Tompkins, M. Changes in Involved and Uninvolved Limb Function during Rehabilitation after Anterior Cruciate Ligament Reconstruction: Implications for Limb Symmetry Index Measures. Amer J Sports Med 2015, 43, 1391-1398.
14. Svensson, K.; Eckerman, M.; Alricsson, M.; Magounakis, T.; Werner, S. Muscle injuries of the dominant or non-dominant leg in male football players at elite level. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 933-937.
15. DeLang, D.M.; Salamh, P.A.; Farooq, A.; Tabben, M.; Whiteley, R.; van Dyk, N.; Chamari, K. The dominant leg is more likely to get injured in soccer players: Systematic review and meta-analysis. Biol. Sport 2021, 38, 397-435.
16. McCabe, K.; Collins, C. Can Genetics Predict Sports Injury? The Association of the Genes GDF5, AMPD1, COL5A1 and IGF2 on Soccer Player Injury Occurrence. Sports (Basel) 2018, 6(1), 21. DOI:10.3390/sports6010021.
17. Collins, C. Resistance Training, Recovery and Genetics: AMPD1 the Gene for Recovery. J. Athl. Enhanc. 2017, 6. DOI:10.4172/2324-9080.1000256.
18. Posthumus, M.; September, A.V.; O’Cuinneagain, D.; van der Merwe, W.; Schwellnus, M.P.; Collins, M. The COL5A1 Gene Is Associated with Increased Risk of Anterior Cruciate Ligament Ruptures in Female Participants. Am. J. Sports Med. 2009, 37, 2234–2240. DOI: 10.1177/0363546509338266.
19. Maciejewska-Skrendo, A.; Leźnicka, K.; Leońska-Duniec, A.; Wilk, M.; Filip, A.; Cięszczyk, P.; Sawczuk, M. Genetics of Muscle Stiffness, Muscle Elasticity and Explosive Strength. J Hum Kinet. 2020, 74, 143-159. DOI:10.2478/hukin-2020-0027.
20. Guest, N.S.; Horne, J.; Vanderhout, S.M.; El-Sohemy, A. Sport Nutrigenomics: Personalized Nutrition for Athletic Performance. Front Nutr. 2019, 6, 8. DOI: 10.3389/fnut.2019.00008.
21. Guest, N.; Corey, P.; Vescovi, J.; El-Sohemy, A. Caffeine, CYP1A2 Genotype, and Endurance Performance in Athletes. Med Sci Sports Exerc. 2018, 50, 1570-8. DOI:10.1249/MSS.0000000000001596.
22. Egoyan, A.; Khipashvili, I. Use of Psychophysiological Computer Tests during the Process of Sportsmen’s Preparation, Physical Education, Sport and Science (PSS) 2017, 3, 8-17. DOI: 10.21846/TST.2017.3.1.
23. Wilkerson, G.B.; Simpson, K.A.; Clark, R.A. Assessment and Training of Visuomotor Reaction Time for Football Injury Prevention. J Sport Rehabil. 2017, 26(1), 26-34.
24. Impellizzeri, F.M.; Rampinini, E.; Maffiuletti, N.; Marcora, S.M. A Vertical Jump Force Test for Assessing Bilateral Strength Asymmetry in Athletes. Med. Sci. Sport Exerc. 2007, 39, 2044-2050.
25. Madruga-Parera, M.; Bishop, C.; Read, P.; Lake, J.; Brazier, J.; Romero-Rodriguez, D. Jumping-based Asymmetries are Negatively Associated with Jump, Change of Direction, and Repeated Sprint Performance, but not Linear Speed, in Adolescent Handball Athletes. J. Hum. Kinet. 2020, 71, 47-58. DOI:10.2478/hukin-2019-0095.
26. Hewit, J.; Cronin, J.; Hume, P. Asymmetry in Multi-Directional Jumping Tasks. Phys Ther Sport 2012, 13, 238-42. DOI:10.1016/j.ptsp.2011.12.003.
27. Menzel, H.J.; Chagas, M.H.; Szmuchrowski, L.A.; Araujo, S.R.S.; de Andrade, A.G.P.; de Jesus-Moraleida, F.R. Analysis of Lower Limb Asymmetries by Isokinetic and Vertical Jump Tests in Soccer Players. J Strength Cond Res 2013, 27, 1370-7. DOI:10.1519/JSC.0b013e318265a3c8.
28. Paterno, M.V.; Ford, K.R.; Myer, G.D.; Heyl, R.; Hewett, T.E. Limb Asymmetries in Landing and Jumping 2 Years Following Anterior Cruciate Ligament Reconstruction. Clin J Sport Med 2007, 17, 258-62. DOI:10.1097/JSM.0b013e31804c77ea.
29. Roso-Moliner, A.; Lozano, D.; Nobari, H.; Bishop, C.; Carton-Llorente, A.; Mainer-Pardos, E. Horizontal Jump Asymmetries are Associated with Reduced Range of Motion and Vertical Jump Performance in Female Soccer Players. BMC Sports Sci Med Rehabil. 2023, 15(1), 80. DOI:10.1186/s13102-023-00697-1.
30. Bishop, C.; Pereira, L.A.; Reis, V.P.; Read, P.; Turner, A.N.; Loturco, I. Comparing the Magnitude and Direction of Asymmetry during the Squat, Countermovement and Drop Jump Tests in Elite Youth Female Soccer Players. J Sports Sci. 2020 38(11-12), 1296-1303. DOI:10.1080/02640414.2019.1649525.
31. Costa Silva, J.R.L.; Detanico, D.; Dal Pupo, J.; Freitas C. Bilateral Asymmetry of Knee and Ankle Isokinetic Torque in Soccer Players u20 Category. Braz J Kinanthro Hum Perf 2015, 17, 195-204.
32. Dos’Santos, T.; Thomas, C.; Jones, P.; Comfort, P. Asymmetries in Single and Triple Hop are not Detrimental to Change of Direction Speed. J Trainology 2017, 6, 35–41.
33. Dos’Santos, T.; Thomas, C.; Jones, P.A.; Comfort, P. Assessing Muscle Strength Asymmetry via a Unilateral Stance Isometric Mid-Thigh Pull. Int J Sports Physiol Perf 2017, 12, 505-511.
34. Bishop, C.; Turner, A.; Jarvis, P.; Chavda, S.; Read, P. Considerations for Selecting Field-Based Strength and Power Fitness Tests to Measure Asymmetries. J Strength Cond Res. 2017, 31(9), 2635-2644. DOI:10.1519/JSC.0000000000002023.
35. Bishop, C.; Turner, A.; Read, P. Effects of Inter-Limb Asymmetries on Physical and Sports Performance: A Systematic Review. J. Sport. Sci. 2018, 36, 1135–1144. DOI: 10.1080/02640414.2017.1361894.
36. Read, P.J.; McAuliffe, S.; Bishop, C.; Oliver, J.L.; Graham-Smith, P.; Farooq, M.A. Asymmetry Thresholds for Common Screening Tests and Their Effects on Jump Performance in Professional Soccer Players. J Athl Train. 2021, 56(1), 46-53. DOI: 10.4085/1062-6050-0013.20.
37. Barrera-Domínguez, F.J.; Carmona-Gómez, A.; Tornero-Quiñones, I.; Sáez-Padilla, J.; Sierra-Robles, Á.; Molina-López, J. Influence of Dynamic Balance on Jumping-Based Asymmetries in Team Sport: A Between-Sports Comparison in Basketball and Handball Athletes. Int J Environ Res Public Health. 2021, 18(4), 1866. DOI: 10.3390/ijerph18041866.
38. Maloney, S.J. The Relationship Between Asymmetry and Athletic Performance: A Critical Review. J. Strength Cond. Res. 2019, 33, 2579–2593. DOI:10.1519/JSC.0000000000002608.
39. Bishop, C.; Turner, A.; Maloney, S.; Lake, J.; Loturco, I.; Bromley, T.; Read, P. Drop Jump Asymmetry is Associated with Reduced Sprint and Change-of-Direction Speed Performance in Adult Female Soccer Players. Sports (Basel). 2019, 7(1), 29. DOI: 10.3390/sports7010029.
40. Bishop, C.; Lake, J.; Loturco, I.; Papadopoulos, K.; Turner, A.; Read, P. Interlimb Asymmetries: The Need for an Individual Approach to Data Analysis. J Strength Cond Res. 2021, 35(3), 695-701. DOI:10.1519/JSC.0000000000002729.
41. Auvinet, E.; Multon, F.; Meunier, J. Lower Limb Movement Asymmetry Measurement with a Depth Camera. Annu Int Conf IEEE Eng Med Biol Soc. 2012, 6793-6. DOI: 10.1109/EMBC.2012.6347554.
42. Auvinet, E.; Multon, F.; Meunier, J. New Lower-Limb Gait Asymmetry Indices Based on a Depth Camera. Sensors 2015, 15, 4605-4623. DOI:10.3390/s150304605
43. Thomas, C.; Dos’Santos, T.; Comfort, P.; Jones, P.A. Effect of Asymmetry on Biomechanical Characteristics During 180° Change of Direction. J Strength Cond Res. 2020 34(5), 1297-1306. DOI:10.1519/JSC.0000000000003553.
44. Wu, J.; Liu, Y.; Wu, X. Early Identification of Gait Asymmetry Using a Dual-Channel Hybrid Deep Learning Model Based on a Wearable Sensor. Symmetry 2023, 15, 897. DOI:10.3390/sym15040897
45. Steinmetzer, T.; Wilberg, S.; Bönninger, I. Analyzing Gait Symmetry with Automatically Synchronized Wearable Sensors in Daily Life. Microprocess. Microsyst. 2020, 77, 103118.
46. Gulgin, H.; Hall, K.; Luzadre, A. 3D Gait Analysis with and without an Orthopedic Walking Boot. Gait Posture 2018, 59, 76-82.
47. Viteckova, S.; Kutilek, P.; Svoboda, Z. Gait Symmetry Measures: A Review of Current and Prospective Methods. Biomed. Signal Process. Control 2018, 42, 89-100.
48. Karimpour, R.; Krupenevich, R.L.; Miller, R.H.; Shim, J.K. Evaluation of Gait Asymmetry using Force Plates versus Accelerometer. J Mech Med Biol 2018, 18(2), 1850015; DOI:10.1142/S021951941850015X.
49. Al-Juaid, R.; Al-Amri, M. An Evaluation of Symmetries in Ground Reaction Forces during Self-Paced Single- and Dual-Task Treadmill Walking in the Able-Bodied Men. Symmetry 2020, 12, 2101. DOI:10.3390/sym12122101
50. Dai, B.; Butler, R.J.; Garrett, W.E.; Queen, R.M. Using Ground Reaction Force to Predict Knee Kinetic Asymmetry Following Anterior Cruciate Ligament Reconstruction, Scand J Med Sci Sports 2014, 24 (6), 974-981.
51. Wojdala, G.; Trybulski, R.; Bichowska, M.; Krzysztofik, M. A Comparison of Electromyographic Inter-Limb Asymmetry During a Standard Versus a Sling Shot Assisted Bench Press Exercise. J Hum Kinet. 2022, 83, 223-234; DOI:10.2478/hukin-2022-0084.
52. Abdul Halim, H.N.; Azaman, A.; Manaf, H.; Saidin, S.; Zulkapri, I.; Yahya, A. Gait Asymmetry Assessment using Muscle Activity Signal: A Review of Current Methods. J Phys: Conference Series 2019, 1372: 012075; DOI:10.1088/1742-6596/1372/1/012075.
53. Tajdini, H.; Mantashloo, Z.; Thomas, A.C. et al. Inter-limb Asymmetry of Kinetic and Electromyographic during Walking in Patients with Chronic Ankle Instability. Sci Rep 2022, 12, 3928. DOI:10.1038/s41598-022-07975-x
54. Palmieri-Smith, R.M,; Villwock, M.; Downie, B.: Hecht, G.; Zernicke, R. Pain and Effusion and Quadriceps Activation and Strength. Journal of Athletic Training 2013, 48(2): 186-191. DOI: 10.4085/1062-6050-48.2.10
55. Ithurburn, M. P.; Paterno M. V.; Ford, K. R.; Hewett, T. E.; Schmitt, L. C. Young Athletes with Quadriceps Femoris Strength Asymmetry at Return to Sport After Anterior Cruciate Ligament Reconstruction Demonstrate Asymmetric Single-Leg Drop-Landing Mechanics. American Orthopaedic Society for Sports Medicine 2015, 43 (11). DOI: 10.1177/03635465156020
56. Cook, G.; Burton, L.; Hoogenboom, B.J.; Voight, M. Functional Movement Screening: the Use of Fundamental Movements as an Assessment of Function-Part 1. Int J Sports Phys Ther. 2014, 9(3), 396-409.
57. Cook, G.; Burton, L.; Hoogenboom, B.J.; Voight, M. Functional Movement Screening: the Use of Fundamental Movements as an Assessment of Function-Part 2. Int J Sports Phys Ther. 2014, 9(4), 549-63.
58. Triplett, C.R.; Dorrel, B.S.; Symonds, M.L.; Selland, C.A.; Jensen, D.D.; Poole, C.N. Functional Movement Screen Detected Asymmetry & Normative Values Among College-Aged Students. Int J Sports Phys Ther. 2021, 16(2), 450-458; DOI: 10.26603/001c.19443.
59. Marques, V.B.; Medeiros, T.M.; de Souza Stigger, F.; Nakamura, F.Y.; Baroni, B.M. The Functional Movement Screen (FMS™) in Elite Young Soccer Players Between 14 and 20 Years: Composite Score, Individual-Test Scores and Asymmetries. Int J Sports Phys Ther. 2017 12(6), 977-985.
60. Mokha, M.; Sprague, P.A.; Gatens, D.R. Predicting Musculoskeletal Injury in National Collegiate Athletic Association Division II Athletes from Asymmetries and Individual-Test Versus Composite Functional Movement Screen Scores. J Athl Train. 2016 51(4), 276-82; DOI:10.4085/1062-6050-51.2.07.
61. Jones, S.C.; Fuller, J.T.; Chalmers, S.; Debenedictis, T.A.; Zacharia, A.; Tarca, B.; Townsley, A.; Milanese, S. Combining Physical Performance and Functional Movement Screen Testing to Identify Elite Junior Australian Football Athletes at Risk of Injury. Scand J Med Sci Sports 2020 30(8), 1449-1456; DOI:10.1111/sms.13686
62. Mrozek, A. et al. Assessment of the Functional Movement Screen Test with the Use of Motion Capture System by the Example of Trunk Stability Push-Up Exercise Among Adolescent Female Football Players. Vibrations in Physical Systems 2020, 31, 2020220-1-2020220-11.
63. Chang, H.Y. et al. Automatic Image-Capture and Angle Tracking System Applied on Functional Movement Screening for Athletes. 1st IEEE International Conference on Knowledge Innovation and Invention (ICKII) 2018, 106-107.
64. Whiteside, D.; Deneweth, J.M.; Pohorence, M.A.; Sandoval, B.; Russell, J.R.; McLean, S.G.; et al. Grading the Functional Movement Screen: A Comparison of Manual (Real-Time) and Objective Methods. J Strength Cond Res. 2016 , 30(4), 924–33.
65. Saki, F. Functional Movement Screen in Elite Boy Basketball Players: A Reliability Study. PTJ 2017, 6 (4), 211-216.
66. Jurak, I. et al. Assessing Young Gymnasts’ Dynamic Posture: A Comparison of Methods. J. Appl. health sci. 2020, 6(1), 129-135.
67. Lebreton, G.; Géminard, C.; Lapraz, F.; Pyrpassopoulos, S.; Cerezo, D.; Spéder, P.; Ostap, E.M.; Noselli, S. Molecular to Organismal Chirality is Induced by the Conserved Myosin 1D. Science 2018, 362(6417), 949-952; DOI:10.1126/science.aat8642.
68. Alsafwani, R.S.; Nasser, K.K.; Shinawi, T.; Banaganapalli, B.; Elsokary, H.A.; Zaher, Z.F.; Shaik, N.A.; Abdelmohsen, G.; Al-Aama, J.Y.; Shapiro, A.J.; Al-Radi, O.; Elango, R. and Alahmadi, T. Novel MYO1D Missense Variant Identified Through Whole Exome Sequencing and Computational Biology Analysis Expands the Spectrum of Causal Genes of Laterality Defects. Front. Med. 2021, 8, 724826; DOI:10.3389/fmed.2021.724826
69. Błach, W.; Rydzik, Ł.; Stanula, A.; Cynarski, W.J.; Ambroży, T. Injury Symmetry in Judo. Symmetry 2023, 15, 13; DOI:10.3390/sym15010013.
70. Sterkowicz, S.; Lech, G.; Blecharz, J. Effects of Laterality on the Technical/Tactical Behaviour in View of the Results of Judo Fights. Arch. Budo 2010, 6, 173-177.
71. Korobeinikova, L.; Korobeynikov, G.; Cynarski, W.; Borysova, O.; Kovalchuk, V.; Matveev, S.; Vorontsov, A.; Novak, V. Tactical Styles of Fighting and Functional Asymmetry of the Brain Among Elite Wrestlers. Ido Mov. Cult. J. Martial Arts Anthropol. 2020, 20, 433-443.
72. Ruas, C.V.; Brown, L.E.; Pinto, R.S. Lower-extremity side-to-side strength asymmetry of professional soccer players according to playing position. Kinesiology 2015, 2, 188-192.
73. Banse, H., & Cribb, A. E.. Comparative efficacy of oral meloxicam and phenylbutazone in 2 experimental pain models in the horse. Canad Vet J. 2017 58(2), 157.
74. Persson-Sjodin, E., Hernlund, E., Pfau, T., Haubro Andersen, P., Holm Forsström, K., & Rhodin, M. Effect of meloxicam treatment on movement asymmetry in riding horses in training. PLoS One, 2019, 14(8), e0221117.
75. Ricci, A., & Roviello, G. N. Exploring the Protective Effect of Food Drugs against Viral Diseases: Interaction of Functional Food Ingredients and SARS-CoV-2, Influenza Virus, and HSV. Life, 2023, 13(2), 402.
76. Baker, S., Gilhen-Baker, M., & Roviello, G. N. The Role of Nutrition and Forest-Bathing in the Physical Rehabilitation of Physically Inactive Patients: From the Molecular Aspects to New Nature-Inspired Techniques. International Journal of Environmental Research and Public Health, 2022, 20(1), 793.
77. Roviello, V., Gilhen-Baker, M., Vicidomini, C., & Roviello, G. N. Forest-bathing and physical activity as weapons against COVID-19: A review. Environmental chemistry letters, 2022, 20, 131–140.
78. Falanga, A. P.; Terracciano, M.; Oliviero, G.; Roviello, G. N.; Borbone, N., Exploring the Relationship between G-Quadruplex Nucleic Acids and Plants: From Plant G-Quadruplex Function to Phytochemical G4 Ligands with Pharmaceutic Potential. Pharmaceutics 2022, 14, (11), 2377.
79. Vicidomini, C.; Roviello, V.; Roviello, G. N., In silico investigation on the interaction of chiral phytochemicals from opuntia ficus-indica with SARS-CoV-2 Mpro. Symmetry 2021, 13, (6), 1041.
80. Autiero, I.; Roviello, G. N., Interaction of Laurusides 1 and 2 with the 3C-like Protease (Mpro) from Wild-Type and Omicron Variant of SARS-CoV-2: A Molecular Dynamics Study. International Journal of Molecular Sciences 2023, 24, (6), 5511.
81. Roviello, V.; Scognamiglio, P. L.; Caruso, U.; Vicidomini, C.; Roviello, G. N., Evaluating In Silico the Potential Health and Environmental Benefits of Houseplant Volatile Organic Compounds for an Emerging ‘Indoor Forest Bathing’Approach. International Journal of Environmental Research and Public Health 2021, 19, (1), 273.
82. Roviello, V.; Gilhen-Baker, M.; Roviello, G. N.; Lichtfouse, E., River therapy. Environmental Chemistry Letters 2022, 20, (5), 2729-2734.
83. Roviello, V.; Roviello, G. N., Less COVID-19 deaths in southern and insular Italy explained by forest bathing, Mediterranean environment, and antiviral plant volatile organic compounds. Environmental chemistry letters 2021, 1-11.
84. Roviello, V.; Roviello, G. N., Lower COVID-19 mortality in Italian forested areas suggests immunoprotection by Mediterranean plants. Environmental chemistry letters 2021, 19, (1), 699-710.
85. Roviello, V.; Gilhen-Baker, M.; Vicidomini, C.; Roviello, G. N., The healing power of clean rivers: In silico evaluation of the antipsoriatic potential of apiin and hyperoside plant metabolites contained in river waters. International Journal of Environmental Research and Public Health 2022, 19, (5), 2502.
86. Ujaković, F.; Šarabon, N., Relationship between Asymmetries Measured on Different Levels in Elite Basketball Players. Symmetry 2021, 13, (8), 1436.
87. Ujaković, F.; Šarabon, N., Change of direction performance is influenced by asymmetries in jumping ability and hip and trunk strength in elite basketball players. Applied Sciences 2020, 10, (19), 6984.
Movement Asymmetries: from their Molecular Origin to the Analysis of Movement Asymmetries in Athletes
Asymmetry plays a major role in biology at all scales. This can be seen examining the helix of DNA, the fact that the human heart is on the left side, or that most people use their right hand. A single protein such as Myosin 1D can induce helical motion in another molecule. This causes cells, organs, and even entire bodies to twist in a domino effect, causing left-right behaviour. More in general, athlete movements are often asymmetric and, during the physical rehabilita-tion after injury the asymmetry is visually discernible. Herein we review the molecular basis of movement asymmetries and report on the available knowledge on the few therapeutics investigated so far such as meloxicam. From a more rehabilitative perspective, it is very important to use effective methods to control the process of resolving the injury-related movement asymmetry through the complex use of specialized exercises, measurements and gait analysis which all can provide useful information on the effectiveness of rehabilitation plans. If for each athlete the normal range of asymmetry is known, the asymmetry can be treated individually and the evolution can be monitored over time. Appropriate measures should be taken if the movement asymmetry is outside this range. In addition, genetic, physiological, and psychological factors relevant to athlete health should be considered in the process of assessing and improving exer-cise asymmetry as we also discuss in this review. The main proposal of this work is that movement asymmetries in athletes should be treated individually, taking into account the athlete’s genetics, physical condition, and previous injuries.
Movement Asymmetries: from their Molecular Origin to the Analysis of Movement Asymmetries in Athletes
No results.
Movement Asymmetries: from their Molecular Origin to the Analysis of Movement Asymmetries in Athletes