Keywords: Dna Vaccines, rna Vaccines, neuropathy, amyloid Beta, alzheimer Disease
Affiliations: *** IBB - CNR ***
1Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy2Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy3Center for Life Sciences and Technologies (CESTEV), University of Naples Federico II, Via Tommaso De Amicis 95, 80131 Naples, Italy4Department of Molecular Medicine and Medical Biotechnologies, Via Sergio Pansini 5, 80131 Naples, Italy
References: Wouk, J.; Rechenchoski, D.Z.; Rodrigues, B.C.D.; Ribelato, E.V.; Faccin-Galhardi, L.C. Viral infections and their relationship to neurological disorders. Arch. Virol. 2021, 166, 733–753. [Google Scholar] [CrossRef] [PubMed]Bloom, G.S. Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014, 71, 505–508. [Google Scholar] [CrossRef] [PubMed]Hardy, J. The relationship between amyloid and tau. J. Mol. Neurosci. 2003, 20, 203–206. [Google Scholar] [CrossRef] [PubMed]Ferrari-Souza, J.P.; Lussier, F.Z.; Leffa, D.T.; Therriault, J.; Tissot, C.; Bellaver, B.; Ferreira, P.C.; Malpetti, M.; Wang, Y.-T.; Povala, G. APOE ε4 associates with microglial activation independently of Aβ plaques and tau tangles. Sci. Adv. 2023, 9, eade1474. [Google Scholar] [CrossRef]Zhang-Nunes, S.X.; Maat-Schieman, M.L.; van Duinen, S.G.; Roos, R.A.; Frosch, M.P.; Greenberg, S.M. The cerebral β-amyloid angiopathies: Hereditary and sporadic. Brain Pathol. 2006, 16, 30–39. [Google Scholar] [CrossRef]Dorszewska, J.; Prendecki, M.; Oczkowska, A.; Dezor, M.; Kozubski, W. Molecular basis of familial and sporadic Alzheimer’s disease. Curr. Alzheimer Res. 2016, 13, 952–963. [Google Scholar] [CrossRef]Younger, D.S.; Younger, A.P.J.; Guttmacher, S. Childhood Vaccination. Neurol. Clin. 2016, 34, 1035–1047. [Google Scholar] [CrossRef]Plotkin, S.A. Vaccines: The Fourth Century. Clin. Vaccine Immunol. 2009, 16, 1709–1719. [Google Scholar] [CrossRef]Rodrigues, C.M.C.; Pinto, M.V.; Sadarangani, M.; Plotkin, S.A. Whither vaccines? J. Infect. 2017, 74, S2–S9. [Google Scholar] [CrossRef]Hol, W.; Verlinde, C. Non-communicable diseases. Insulin 2006, 106, 107. [Google Scholar]Saxena, M.; van der Burg, S.H.; Melief, C.J.; Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer 2021, 21, 360–378. [Google Scholar] [CrossRef]Hosseini, M.; Seyedpour, S.; Khodaei, B.; Loghman, A.-H.; Seyedpour, N.; Yazdi, M.-H.; Rezaei, N. Cancer vaccines for triple-negative breast cancer: A systematic review. Vaccines 2023, 11, 146. [Google Scholar] [CrossRef] [PubMed]Qian, D.; Li, J.; Huang, M.; Cui, Q.; Liu, X.; Sun, K. Dendritic cell vaccines in breast cancer: Immune modulation and immunotherapy. Biomed. Pharmacother. 2023, 162, 114685. [Google Scholar] [CrossRef] [PubMed]Costanzo, M.; De Giglio, M.A.; Roviello, G.N. Anti-coronavirus vaccines: Past investigations on SARS-CoV-1 and MERS-CoV, the approved vaccines from BioNTech/Pfizer, Moderna, Oxford/AstraZeneca and others under Development Against SARSCoV-2 Infection. Curr. Med. Chem. 2022, 29, 4–18. [Google Scholar] [CrossRef] [PubMed]Borbone, N.; Piccialli, I.; Falanga, A.P.; Piccialli, V.; Roviello, G.N.; Oliviero, G. Nucleic Acids as Biotools at the Interface between Chemistry and Nanomedicine in the COVID-19 Era. Int. J. Mol. Sci. 2022, 23, 4359. [Google Scholar] [CrossRef]Costanzo, V.; Roviello, G.N. The Potential Role of Vaccines in Preventing Antimicrobial Resistance (AMR): An Update and Future Perspectives. Vaccines 2023, 11, 333. [Google Scholar] [CrossRef]Okura, Y.; Matsumoto, Y. Recent advance in immunotherapies for Alzheimer disease, with special reference to DNA vaccination. Hum. Vaccines 2014, 5, 373–380. [Google Scholar] [CrossRef]Imbimbo, B.P. Toxicity of β-amyloid vaccination in patients with Alzheimer’s disease. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 2002, 51, 794. [Google Scholar] [CrossRef]Weller, J.; Budson, A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Research 2018, 7. [Google Scholar] [CrossRef]Castellani, R.J.; Rolston, R.K.; Smith, M.A. Alzheimer disease. Dis. A-Mon. 2010, 56, 484–546. [Google Scholar] [CrossRef]Hippius, H.; Müller, N. The work of Emil Kraepelin and his research group in München. Eur. Arch. Psychiatry Clin. Neurosci. 2008, 258, 3–11. [Google Scholar] [CrossRef] [PubMed]Schneider, J.A. Neuropathology of dementia disorders. CONTINUUM Lifelong Learn. Neurol. 2022, 28, 834–851. [Google Scholar] [CrossRef] [PubMed]Arlt, S. Non-Alzheimer’s disease—Related memory impairment and dementia. Dialogues Clin. Neurosci. 2022, 15, 465–473. [Google Scholar] [CrossRef] [PubMed]Kodintsev, A.N.; Izmozherova, N.V.; Popov, A.A.; Volkova, L.I.; Antropova, I.P.; Ryabinina, A.V. Biochemical Platelet Markers of Cognitive Impairments in Alzheimer’s Disease. Neurochem. J. 2023, 17, 10–18. [Google Scholar] [CrossRef]Ghosh, K.K.; Padmanabhan, P.; Yang, C.-T.; Ng, D.C.E.; Palanivel, M.; Mishra, S.; Halldin, C.; Gulyás, B. Positron emission tomographic imaging in drug discovery. Drug Discov. Today 2022, 27, 280–291. [Google Scholar] [CrossRef]Yan, Q.; Nho, K.; Del-Aguila, J.L.; Wang, X.; Risacher, S.L.; Fan, K.-H.; Snitz, B.E.; Aizenstein, H.J.; Mathis, C.A.; Lopez, O.L. Genome-wide association study of brain amyloid deposition as measured by Pittsburgh Compound-B (PiB)-PET imaging. Mol. Psychiatry 2021, 26, 309–321. [Google Scholar] [CrossRef]Rawat, P.; Sehar, U.; Bisht, J.; Selman, A.; Culberson, J.; Reddy, P.H. Phosphorylated tau in Alzheimer’s disease and other tauopathies. Int. J. Mol. Sci. 2022, 23, 12841. [Google Scholar] [CrossRef]Wegmann, S.; Biernat, J.; Mandelkow, E. A current view on Tau protein phosphorylation in Alzheimer’s disease. Curr. Opin. Neurobiol. 2021, 69, 131–138. [Google Scholar] [CrossRef]Goedert, M.; Klug, A.; Crowther, R.A. Tau protein, the paired helical filament and Alzheimer’s disease. J. Alzheimer’s Dis. 2006, 9, 195–207. [Google Scholar] [CrossRef]Tzioras, M.; McGeachan, R.I.; Durrant, C.S.; Spires-Jones, T.L. Synaptic degeneration in Alzheimer disease. Nat. Rev. Neurol. 2023, 19, 19–38. [Google Scholar] [CrossRef]Li, Y.; Liu, Y.; Wang, Z.; Jiang, Y. Clinical trials of amyloid-based immunotherapy for Alzheimer’s disease: End of beginning or beginning of end? Expert Opin. Biol. Ther. 2013, 13, 1515–1522. [Google Scholar] [CrossRef] [PubMed]DaSilva, K.A.; Brown, M.E.; McLaurin, J. Reduced oligomeric and vascular amyloid-β following immunization of TgCRND8 mice with an Alzheimer’s DNA vaccine. Vaccine 2009, 27, 1365–1376. [Google Scholar] [CrossRef] [PubMed]Okura, Y.; Miyakoshi, A.; Kohyama, K.; Park, I.-K.; Staufenbiel, M.; Matsumoto, Y. Nonviral Aβ DNA vaccine therapy against Alzheimer’s disease: Long-term effects and safety. Proc. Natl. Acad. Sci. USA 2006, 103, 9619–9624. [Google Scholar] [CrossRef] [PubMed]Okura, Y.; Matsumoto, Y. DNA Vaccine Therapy for Alzheimer’s Disease: Present Status and Future Direction. Rejuvenation Res. 2008, 11, 301–308. [Google Scholar] [CrossRef]Lambracht-Washington, D.; Qu, B.-x.; Fu, M.; Anderson, L.D.; Eagar, T.N.; Stüve, O.; Rosenberg, R.N. A peptide prime-DNA boost immunization protocol provides significant benefits as a new generation Aβ42 DNA vaccine for Alzheimer disease. J. Neuroimmunol. 2013, 254, 63–68. [Google Scholar] [CrossRef]Doherty, T.M.; Matsumoto, Y.; Niimi, N.; Kohyama, K. Development of a New DNA Vaccine for Alzheimer disease Targeting a Wide Range of Aβ Species and Amyloidogenic Peptides. PLoS ONE 2013, 8, e75203. [Google Scholar]Cribbs, D.H. Abeta DNA Vaccination for Alzheimers Disease: Focus on Disease Prevention. CNS Neurol. Disord. Drug Targets 2010, 9, 207–216. [Google Scholar] [CrossRef]Petrushina, I.; Hovakimyan, A.; Harahap-Carrillo, I.S.; Davtyan, H.; Antonyan, T.; Chailyan, G.; Kazarian, K.; Antonenko, M.; Jullienne, A.; Hamer, M.M.; et al. Characterization and preclinical evaluation of the cGMP grade DNA based vaccine, AV-1959D to enter the first-in-human clinical trials. Neurobiol. Dis. 2020, 139, 104823. [Google Scholar] [CrossRef]Valiukas, Z.; Ephraim, R.; Tangalakis, K.; Davidson, M.; Apostolopoulos, V.; Feehan, J. Immunotherapies for Alzheimer’s Disease—A Review. Vaccines 2022, 10, 1527. [Google Scholar] [CrossRef]Qu, L.; Sha, S.; Xing, X.-N.; Wang, T.; Li, Y.; Zhang, R.-W.; Shen, X.-L.; Cao, Y.-P. DNA vaccines targeting amyloid-β oligomer ameliorate cognitive deficits of aged APP/PS1/tau triple-transgenic mouse models of Alzheimer’s disease. Neural Regen. Res. 2022, 17, 2305. [Google Scholar] [CrossRef]Evans, C.F.; Davtyan, H.; Petrushina, I.; Hovakimyan, A.; Davtyan, A.; Hannaman, D.; Cribbs, D.H.; Agadjanyan, M.G.; Ghochikyan, A. Epitope-based DNA vaccine for Alzheimer’s disease: Translational study in macaques. Alzheimer’s Dement. 2013, 10, 284–295. [Google Scholar] [CrossRef] [PubMed]Lambracht-Washington, D.; Fu, M.; Wight-Carter, M.; Riegel, M.; Hynan, L.S.; Rosenberg, R.N. DNA Aβ42 immunization via needle-less Jet injection in mice and rabbits as potential immunotherapy for Alzheimer’s disease. J. Neurol. Sci. 2023, 446, 120564. [Google Scholar] [CrossRef] [PubMed]Lee, J.; Kumar, S.A.; Jhan, Y.Y.; Bishop, C.J. Engineering DNA vaccines against infectious diseases. Acta Biomater. 2018, 80, 31–47. [Google Scholar] [CrossRef]Davtyan, H.; Bacon, A.; Petrushina, I.; Zagorski, K.; Cribbs, D.H.; Ghochikyan, A.; Agadjanyan, M.G. Immunogenicity of DNA-and recombinant protein-based Alzheimer disease epitope vaccines. Hum. Vaccines Immunother. 2014, 10, 1248–1255. [Google Scholar] [CrossRef]Sasaki, S.; Takeshita, F.; Xin, K.-Q.; Ishii, N.; Okuda, K. Adjuvant formulations and delivery systems for DNA vaccines. Methods 2003, 31, 243–254. [Google Scholar] [CrossRef] [PubMed]Ulmer, J.B.; Mason, P.W.; Geall, A.; Mandl, C.W. RNA-based vaccines. Vaccine 2012, 30, 4414–4418. [Google Scholar] [CrossRef]Fessel, J. A vaccine to prevent initial loss of cognition and eventual Alzheimer’s disease in elderly persons. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2021, 7, e12126. [Google Scholar] [CrossRef]Panza, F.; Logroscino, G. Anti-tau vaccine in Alzheimer’s disease: A tentative step. Lancet Neurol. 2017, 16, 99–100. [Google Scholar] [CrossRef]Davtyan, H.; Chen, W.W.; Zagorski, K.; Davis, J.; Petrushina, I.; Kazarian, K.; Cribbs, D.H.; Agadjanyan, M.G.; Blurton-Jones, M.; Ghochikyan, A. MultiTEP platform-based DNA epitope vaccine targeting N-terminus of tau induces strong immune responses and reduces tau pathology in THY-Tau22 mice. Vaccine 2017, 35, 2015–2024. [Google Scholar] [CrossRef]Mardomi, A.; Mousavi, T.; Farnood, F.; Khosroshahi, H.T. Genotoxicity: A neglected but potentially critical aspect of adenoviral COVID-19 vaccines. Future Med. 2023. [Google Scholar] [CrossRef]Cimolai, N. Do RNA vaccines obviate the need for genotoxicity studies? Mutagenesis 2020, 35, 509–510. [Google Scholar] [CrossRef] [PubMed]Falanga, A.P.; Terracciano, M.; Oliviero, G.; Roviello, G.N.; Borbone, N. Exploring the Relationship between G-Quadruplex Nucleic Acids and Plants: From Plant G-Quadruplex Function to Phytochemical G4 Ligands with Pharmaceutic Potential. Pharmaceutics 2022, 14, 2377. [Google Scholar] [CrossRef] [PubMed]Lipps, H.J.; Rhodes, D. G-quadruplex structures: In vivo evidence and function. Trends Cell Biol. 2009, 19, 414–422. [Google Scholar] [CrossRef] [PubMed]Saad, M.; Zhang, R.; Cucchiarini, A.; Mehawej, C.; Mergny, J.-L.; Mroueh, M.; Faour, W.H. G-quadruplex forming sequences in the genes coding for cytochrome P450 enzymes and their potential roles in drug metabolism. Biochimie 2023, 214, 45–56. [Google Scholar] [CrossRef] [PubMed]Xiao, C.-D.; Zhong, M.-Q.; Gao, Y.; Yang, Z.-L.; Jia, M.-H.; Hu, X.-H.; Xu, Y.; Shen, X.-C. A Unique G-Quadruplex Aptamer: A Novel Approach for Cancer Cell Recognition, Cell Membrane Visualization, and RSV Infection Detection. Int. J. Mol. Sci. 2023, 24, 14344. [Google Scholar] [CrossRef]Balasubramanian, S.; Hurley, L.H.; Neidle, S. Targeting G-quadruplexes in gene promoters: A novel anticancer strategy? Nat. Rev. Drug Discov. 2011, 10, 261–275. [Google Scholar] [CrossRef]Pavlova, A.V.; Kubareva, E.A.; Monakhova, M.V.; Zvereva, M.I.; Dolinnaya, N.G. Impact of G-quadruplexes on the regulation of genome integrity, DNA damage and repair. Biomolecules 2021, 11, 1284. [Google Scholar] [CrossRef]Vijay Kumar, M.J.; Morales, R.; Tsvetkov, A.S. G-quadruplexes and associated proteins in aging and Alzheimer’s disease. Front. Aging 2023, 4, 1164057. [Google Scholar] [CrossRef]Brčić, J.; Plavec, J. NMR structure of a G-quadruplex formed by four d(G4C2) repeats: Insights into structural polymorphism. Nucleic Acids Res. 2018, 46, 11605–11617. [Google Scholar] [CrossRef]Angeli, F.; Spanevello, A.; Reboldi, G.; Visca, D.; Verdecchia, P. SARS-CoV-2 vaccines: Lights and shadows. Eur. J. Intern. Med. 2021, 88, 1–8. [Google Scholar] [CrossRef]Bartas, M.; Volná, A.; Brázda, V.; Pecinka, P. G-quadruplex forming sites in DNA/RNA vaccines. In Proceedings of the 8th International Meeting on Quadruplex Nucleic Acids, Marienbad, Czech Republic, 28 June 2022; Available online: https://www.researchgate.net/publication/361813967_G-quadruplex_forming_sites_in_DNARNA_vaccines (accessed on 7 October 2023).Brazda, V.; Kolomaznik, J.; Mergny, J.-L.; Stastny, J. G4Killer web application: A tool to design G-quadruplex mutations. Bioinformatics 2020, 36, 3246–3247. [Google Scholar] [CrossRef] [PubMed]Ricci, A.; Roviello, G.N. Exploring the Protective Effect of Food Drugs against Viral Diseases: Interaction of Functional Food Ingredients and SARS-CoV-2, Influenza Virus, and HSV. Life 2023, 13, 402. [Google Scholar] [CrossRef] [PubMed]
Summary of the Current Status of DNA Vaccination for Alzheimer Disease
Alzheimer disease (AD) is one of the most common and disabling neuropathies in the ever-growing aged population around the world, that especially affects Western countries. We are in urgent need of finding an effective therapy but also a valid prophylactic means of preventing AD. There is a growing attention currently paid to DNA vaccination, a technology particularly used during the COVID-19 era, which can be used also to potentially prevent or modify the course of neurological diseases, including AD. This paper aims to discuss the main features and hurdles encountered in the immunization and therapy against AD using DNA vaccine technology. Ultimately, this work aims to effectively promote the efforts in research for the development of safe and effective DNA and RNA vaccines for AD.
Summary of the Current Status of DNA Vaccination for Alzheimer Disease
No results.
Summary of the Current Status of DNA Vaccination for Alzheimer Disease