Georgian Medicinal Plants as Rich Natural Sources of Antioxidant Derivatives: A Review on the Current Knowledge and Future Perspectives(951 views)(PDF public62 views) Pirtskhalava M, Mittova V, Tsetskhladze ZR, Palumbo R, Pastore R, Roviello GN
Current Medicinal Chemistry, 2024 Feb 09; DOI:10.2174/01092986: 10-10.
Marina Pirtskhalava1, Valentina Mittova1,2, Zurab R. Tsetskhladze1,2, Rosanna Palumbo3,Raffaele Pastore4 and Giovanni N. Roviello3,*1Teaching University Geomedi, LLC, 4 King Solomon II str. Tbilisi, 0114, Georgia; 2Scientific-Research Institute of Experimental and Clinical Medicine, Teaching University Geomedi, LLC, 4 King Solomon II str.0114, Tbilisi, Georgia; 3Italian National Research Council (IBB-CNR), Institute of Biostructures and Bioimaging, Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, Naples 80131, Italy; 4MSDR&D Innovation Centre, Merck (United Kingdom), 120 Moorgate, London EC2M 6UR, UK
References: [1] Bhatt, I.D.; Rawat, S.; Rawal, R.S. Antioxidants in Medicinal Plants. In: Biotechnology for Medicinal Plants; Chandra, S.; Lata, H.; Varma, A., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; pp. 295-326.
http://dx.doi.org/10.1007/978-3-642-29974-2_13
[2] Ozkan, G.; Kamiloglu, S.; Ozdal, T.; Boyacioglu, D.; Capanoglu, E. Potential use of Turkish medicinal plants in
the treatment of various diseases. Molecules, 2016, 21(3),
[3] Miguel, M.G. Antioxidant activity of medicinal and aromatic plants. A review. Flavour Fragrance J., 2010, 25(5),
[21] Noctor, G.; Foyer, C.H. Ascorbate and glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol.
Plant Mol. Biol., 1998, 49(1), 249-279.
[22] Abaci, Z.T.; Zarifikhosroshahi, M.; Kafkas, E.; Sevindik,
E. Chemical composition, volatiles, and antioxidant activity of Rosa iberica STEV. Hips. Acta Sci. Pol. Hortorum
Cultus, 2016, 15(1), 41-54.
[23] Roman, I.; Stănilă, A.; Stănilă, S. Bioactive compounds
and antioxidant activity of Rosa canina L.biotypes from
spontaneous flora of Transylvania. Chem. Cent. J., 2013,
[24] Ercisli, S. Chemical composition of fruits in some rose
(Rosa spp.) species. Food Chem., 2007, 104(4),
[25] Demir, N.; Yildiz, O.; Alpaslan, M.; Hayaloglu, A.A. Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey. Lebensm.
Khutsishvili, M.; Maisaia, I.; Sikharulidze, S.; Tchelidze,
D. Rosa canina L. Rosa pimpinellifolia Boiss. In: Ethnobotany of the Mountain Regions of Far Eastern Europe; Batsatsashvili, K.; Kikvidze, Z.; Bussmann, R., Eds.;
Springer: Cham, 2020; pp. 815-822.
[27] Zeb, A. Concept, mechanism, and applications of phenolic
antioxidants in foods. J. Food Biochem., 2020, 44(9),
[28] Robbins, R.J.; Bean, S.R. Development of a quantitative
high-performance liquid chromatography–photodiode array detection measurement system for phenolic acids. J.
Chromatogr. A, 2004, 1038(1-2), 97-105.
[29] Spiridon, I.; Nechita, C.; Niculaua, M.; Silion, M.; Armatu, A.; Teacă, C.A.; Bodîrlău, R. Antioxidant and chemical
properties of Inula helenium root extracts. Open Chem.,
2013, 11(10), 1699-1709.
[30] Batsatsashvili, K.; Mehdiyeva, N.; Kikvidze, Z.; Khutsishvili, M.; Maisaia, I.; Sikharulidze, S.; Tchelidze, D.; Alizade, V.; Paniagua Zambrana, N.Y.; Bussmann, R.W. Inula Helenium L. Asteraceae. In: Ethnobotany of the Caucasus; Bussmann, R.W., Ed.; Springer International Publishing: Cham, 2016; pp. 1-5.
[31] Ketskhoveli, N.; Kharadze, A.; Gagnidze, R. Flora of Georgia; Tbilisi, 1971-2011, pp. 1-16.
[32] Nersezashvili, M.; Berashvili, D.; Skiba, A.; Skalicka-Wozniak, K.; Maciag, M.; Metreveli, M.; Widelski, J. Studying
of potential anxiolytic activity of Angelica adzharica m. Pimen. methanolic extract. JECM, 2022, (7), 1-15.
[33] Getia, M.; Mshvildadze, V.; Tabatadze, N.; Legault, J.;
Pichette, A. Biological active compounds from Betula megrelica grown in Georgia. Int. J. Herb. Med., 2018, 6(4),
[34] Vergun, O.; Brindza, J.; Rakhmetov, D. Total antioxidant
activity of plants of Symphytum L. species. In: Agrobiodiversity for Improving Nutrition, Health and Life Quality; ,
Figueiredo, I.V.; Batista, M.T. Antioxidant, anti-inflammatory, and analgesic activities of Agrimonia eupatoria L. Infusion. Evid. Based Complement. Alternat. Med., 2017,
[43] Ivanova, D.; Vankova, D.; Nashar, M. Agrimonia eupatoria tea consumption in relation to markers of inflammation, oxidative status and lipid metabolism in healthy subjects. Arch. Physiol. Biochem., 2013, 119(1), 32-37.
M.C.; Durand, E.; Villeneuve, P. Tocopherols as antioxidants in lipid‐based systems: The combination of chemical and physicochemical interactions determines their efficiency. Compr. Rev. Food Sci. Food Saf., 2022, 21(1),
[64] Al-Yafeai, A.; Bellstedt, P.; Böhm, V. Bioactive compounds and antioxidant capacity of Rosa rugosa depending
on degree of ripeness. Antioxidants, 2018, 7(10), 134.
Rahma Rumata, N.; Emran, T.B.; Nainu, F.; Simal-Gandara, J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food
[68] Khan, M.; Karima, G.; Khan, M.; Shin, J.; Kim, J. Therapeutic effects of saponins for the prevention and treatment
of cancer by ameliorating inflammation and angiogenesis
and inducing antioxidant and apoptotic effects in human
cells. Int. J. Mol. Sci., 2022, 23(18), 10665.
[69] Emir, C.; Emir, A.; Bozkurt, B.; Somer, N.U. Phytochemical constituents from Galanthus alpinus Sosn. var. alpinus
and their anticholinesterase activities. S. Afr. J. Bot., 2019,
[70] Jokhadze, M.; Kuchukhidze, J.; Adeishvili, L.;
Makharadze, R. Bioactive akaloids from Georgian Amaryllidaceae Proceedings of the VII National Congress of Pharmacists of Ukraine, , p. 216. Kharkiv, Ukraine, September
[71] Kemularia-Natadze, J.M. Study of Caucasian species from
genus Galanthus L. Works BIN AN GSSR, 1947, 13, 24-29.
[72] Zonneveld, B.J.M.; Grimshaw, J.M.; Davis, A.P. The systematic value of nuclear DNA content in Galanthus. Plant
Syst. Evol., 2003, 241(1-2), 89-102.
[73] Sirotyuk, E.; Shadge, A.; Gunina, G. Distribution and variability of morphoparameters of species of the genus Galanthus L. in the Republic of Adygea. Russ. J. Earth Sci.,
caucasicum (Grossh.) Boriss. Sedum spurium M. Bieb.
Crassulaceae. In: Ethnobotany of the Caucasus; , 2017; pp.
[76] Younessi-Hamzekhanlu, M.; Sanjari, S.; Dejahang, A.;
Karkaj, E.S.; Nojadeh, M.S.; Gönenç, T.M.; Ozturk, M.
Evaluation of essential oil from different Artemisia fragrans Willd. populations: chemical composition, antioxidant, and antibacterial activity. J. Essent. Oil-Bear. Plants,
2020, 23(6), 1218-1236.
[77] Shafaghat, A.; Noormohammadi, Y.; Zaifizadeh, M. Composition and antibacterial activity of essential oils of
Artemisia fragrans Willd. leaves and roots from Iran. Nat.
the Caucasus; Bussmann, R.W., Ed.; Springer International Publishing: Cham, 2017; pp. 117-122.
[79] Mohammadi, M.; Yousefi, M.; Habibi, Z.; Dastan, D.
Chemical composition and antioxidant activity of the essential oil of aerial parts of Petasites albus from Iran: A good
natural source of euparin. Nat. Prod. Res., 2012, 26(4),
[80] Getia, M.; Korkotadze, T.; Moshiashvili, G.; Tabatadze,
N.; Legault, J.; Mshvildadze, V. Composition and cytotoxicity of essential oils from aerial parts of Thymus tiflisiensis and T. collinus growing in Georgia. Chem. Nat.
Compd., 2022, 58(5), 959-961.
[81] Öztürk, G.; Yilmaz, G.; Ekşi̇, G.; Demi̇Rci̇, B. Chemical
composition and antibacterial activity of Clinopodium
[82] Khazaei, S.; Abdul Hamid, R.; Ramachandran, V.; Mohd
Esa, N.; Pandurangan, A.K.; Danazadeh, F.; Ismail, P. Cytotoxicity and proapoptotic effects of Allium atroviolaceum flower extract by modulating cell cycle arrest and
caspase-dependent and P53 -independent pathway in
breast cancer cell lines. Evid. Based Complement. Alternat.
Med., 2017, 2017, 1-16.
[83] Jgerenaia, G.; Frederich, M.; Mskhiladze, L. Phytochemical and pharmacological review of Allium species from Georgia. Sys. Rev. Pharm., 2022, 13(5), 543-549.
[84] Hosseini, A.; Shahrani, M.; Asgharian, S.; Anjomshoa, M.;
C.G.; Pugine, S.M.P.; Munekata, P.E.S.; Lorenzo, J.M.; de
Melo, M.P. Evaluation of antioxidant capacity of 13 plant
extracts by three different methods: cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb
burgers. J. Food Sci. Technol., 2016, 53(1), 451-460.
[92] Alfadda, A.A.; Sallam, R.M. Reactive oxygen species in
health and disease. J. Biomed. Biotechnol., 2012, 2012,
[93] Salminen, A.; Kaarniranta, K.; Kauppinen, A. Inflammaging: Disturbed interplay between autophagy and inflammasomes. Aging, 2012, 4(3), 166-175.
Snader, K.M.; McCloud, T.G. Ethnobotany and Drug Discovery: The Experience of the US National Cancer Institute. In: Novartis Foundation Symposia; Chadwick, D.J.;
Marsh, J., Eds.; John Wiley & Sons, Ltd.: Chichester, UK,
[103] Jiménez, S.; Gascón, S.; Luquin, A.; Laguna, M.; Ancin-Azpilicueta, C.; Rodríguez-Yoldi, M.J. Rosa canina Extracts have antiproliferative and antioxidant effects on Caco-2 human colon cancer. PLoS One, 2016, 11(7),
[104] Yildiz, M.; Bozcu, H.; Tokgun, O.; Karagur, E.R.; Akyurt,
O.; Akca, H. Cyclamen exerts cytotoxicity in solid tumor
cell lines: A step toward new anticancer agents? Asian
Pac. J. Cancer Prev., 2013, 14(10), 5911-5913.
[105] Amin Jaradat, N.; Al-Masri, M.; Hussen, F.; Zaid, A.N.;
Ali, I.; Tammam, A.; Mostafa Odeh, D.; Hussein
Shakarneh, O.; Rajabi, A. Preliminary phytochemical and
biological screening of cyclamen coum a member of Palestinian flora. Ulum-i Daruyi, 2017, 23(3), 231-237.
[106] Fialho, L.; Cunha-e-Silva, J.A.; Santa-Maria, A.F.; Madureira, F.A.; Iglesias, A.C. Comparative study of systemic early postoperative inflammatory response among
elderly and non-elderly patients undergoing laparoscopic
Oates, P.J.; Hammes, H.P.; Giardino, I.; Brownlee, M. Normalizing mitochondrial superoxide production blocks three
pathways of hyperglycaemic damage. Nature, 2000,
[116] Yung, L.; Leung, F.; Yao, X.; Chen, Z.Y.; Huang, Y. Reactive oxygen species in vascular wall. Cardiovasc. Hematol.
Disord. Drug Targets, 2006, 6(1), 1-19.
[117] Bajaj, S.; Khan, A. Antioxidants and diabetes. Indian J. Endocrinol. Metab., 2012, 16(8)(Suppl. 2), 267.
[118] Aslan, M.; Orhan, N.; Orhan, D.D.; Ergun, F. Hypoglycemic activity and antioxidant potential of some medicinal plants traditionally used in Turkey for diabetes. J.
Ethnopharmacol., 2010, 128(2), 384-389.
[119] Gray, A.M.; Flatt, P.R. Actions of the traditional anti-diabetic plant, Agrimony eupatoria (agrimony): Effects on hyperglycaemia, cellular glucose metabolism and insulin secretion. Br. J. Nutr., 1998, 80(1), 109-114.
[120] Duff, M.; Demidova, O.; Blackburn, S.; Shubrook, J. Cutaneous manifestations of diabetes mellitus. Clin. Diabetes,
[121] Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin
whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem., 2017,
[122] Antimicrobial Resistance. 2014. Available From :https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
C.S. Evaluation of antibacterial activity and phytochemical
screening of Wrightia tinctoria L. Pharmacogn. J., 2010,
[124] Ghosh, M.D.; Golageri, D.B.; Sandaruwan, W.K.S.; Vishnu, J.; Rachel, S. Phytochemical Screening, in-vitro evaluation of antioxidant and antibacterial efficacy of methanolic
leaf extract of Clinopodium nepeta (L.) Kuntze. Int. J.
Pharm. Sci. Res., 2020, 11(12), 6463-6469.
[125] Genebashvili, M. Medicinal Forest Plants of the Caucasus, Recreational and Sightseeing Zones of Georgia; Georgian Academy of Sciences: Tbilisi, Georgia, 1992.
Vasić, S.M.; Čomić, L.R. Extracts of Agrimonia eupatoria
L. as sources of biologically active compounds and evaluation of their antioxidant, antimicrobial, and antibiofilm activities. J. Food Drug Anal., 2016, 24(3), 539-547.
[127] Cwikla, C.; Schmidt, K.; Matthias, A.; Bone, K.M.; Lehmann, R.; Tiralongo, E. Investigations into the antibacterial activities of phytotherapeutics against Helicobacter pylori and Campylobacter jejuni. Phytother. Res., 2010,
[128] Kwon, D.H.; Kwon, H.Y.; Kim, H.J.; Chang, E.J.; Kim,
E.; Vargová, N.; Kmoníčková, E. The therapeutic effects
of Agrimonia eupatoria L. Physiol. Res., 2020, 69(Suppl.
Georgian Medicinal Plants as Rich Natural Sources of Antioxidant Derivatives: A Review on the Current Knowledge and Future Perspectives
The study of antioxidants is of pivotal importance in biomedicine as these molecules could be involved in biological pathways associated with disease. The identification of new antioxidants together with the acquisition of a deeper knowledge on their biology, could lead to the use of these compounds as drugs for innovative treatments. Plants are an important source of phytodrugs that in many cases can be isolated with good extraction yields directly from the vegetal source and are often endowed with a low toxicity profile. Georgia, a country situated on the Black Sea coast in the Caucasus region at the intersection of Western Asia and Eastern Europe, is renowned for its unique woodland habitats and immense biological diversity due to the great variety of climate zones and landscapes. Many wild plants in the area are used as remedies for a number of illnesses in the local traditional medicine. However, the scientific knowledge of these sources of natural drugs and of their molecular components is still far from exhaustive. Therefore, with the present work we reviewed the scientific literature on some of the main Georgian medicinal plants and found that several species are a valuable source of hydrophilic and hydrophobic antioxidants, endowed in some cases with a high ROS-scavenging ability. The analysis of the literature also demonstrated that most of the medicinal extracts and compounds isolated from these plants are beneficial in suppressing multiple diseases in vitro. This review will provide information for scientists looking to develop secure plant-based pharmaceuticals as well as a rationale for using Georgian medicinal plants for the treatment of a range of diseases.
Georgian Medicinal Plants as Rich Natural Sources of Antioxidant Derivatives: A Review on the Current Knowledge and Future Perspectives
No results.
Georgian Medicinal Plants as Rich Natural Sources of Antioxidant Derivatives: A Review on the Current Knowledge and Future Perspectives