Microwave-Assisted, Solid-State Procedure to Covalently Conjugate Hyaluronic Acid to Curcumin: Validation of a Green Synthetic Protocol(25 views) Verdoliva V, Muzio G, Autelli R, Saviano M, Bedini E, De Luca S
Institute of Biostructures and Bioimaging, National Research Council, 80131 Naples, Italy. Department of Clinical and Biological Sciences, University of Turin,10125 Turin, Italy. Institute of Crystallography, National Research Council, 81100 Caserta, Italy. Department of Chemical Sciences,University of Naples Federico II, 80126 Naples,Italy
References: 1. Abdussalam-Mohammed, W.; Ali, A. Q.; & Errayes, A. O. (2020). Green chemistry: Principles, applications, and disad-vantages. Chemical Methodologies, 4, 408–423.
2. Anastas, P.; & Eghbali, N. (2010). Green chemistry: Principles and practice. Chemical Society Reviews, 39, 301–312.
3. Manchala, S.; Tandava, V. S. R. K.; Jampaiah, D.; Bhargava, S. K.; Shanker, V. (2019). Novel and highly efficient strategy for the green synthesis of soluble graphene by aqueous polyphenol extracts of eucalyptus bark and its applications in high-performance supercapacitors. ACS Sustainable Chemistry & Engineering, 7, 11612−11620.
4. Zimmerman, J. B.; Anastas, P. T.; Erythropel, H. C.; Leitner, W. (2020). Designing for a green chemistry future. Science, 367, 397–400.
5. Calce, E.; Mercurio, F. A.; Leone, M.; Saviano, M.; De Luca, S. (2016). Eco-friendly microwave-assisted protocol to prepare hyaluronan-fatty acid conjugates and to induce their self-assembly process. Carbohydrate Polymers, 143, 84–89.
6. Calce, E.; Petricci, E.; Saviano, M.; De Luca, S. (2017). Green microwave-assisted procedure to generate bio-based pectin ma-terials. Sustainable Chemistry and Pharmacy, 5, 127–130.
7. Seo, T.; Toyoshima, N.; Kubota, K.; Ito, H. (2021). Tackling solubility issues in organic synthesis: Solid-state cross-coupling of insoluble aryl halides. Journal of American Chemi-cal Society, 143, 6165–6175.
8. Agrawal, N.; Jaiswal, M. (2022). Bioavailability enhancement of curcumin via esterification processes: A review. Euro-pean Journal of Medicinal Chemistry, 6, 100081.
9. Boroumand, N.; Samarghandian, S.; Hashemy, S. I. (2018). Im-munomodulatory, anti-inflammatory, and antioxidant effects of curcumin. Journal of Herbmed Pharmacology, 7, 211–219.
10. Ghosh, S.; Banerjee, S.; Sil, P. C. (2015). The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: A recent update. Food and Chemical Toxicology, 83, 111–124.
11. Noorafshan, A.; Ashkani-Esfahani, S. (2013). A review of ther-apeutic effects of curcumin. Current Pharmaceutical Design, 19, 2032–2046.
12. Shentu, C.-Y.; Yan, G.; Xu, D-C.; Chen, Y.; Peng, L-H. (2022). Emerging pharmaceutical therapeutics and delivery technolo-gies for osteoarthritis therapy. Frontiers in Pharmacology, 13, 945876.
13. Sethiya, A.; Agarwal, D. K.; Agarwal, S. (2020). Current Trends in Drug Delivery System of Curcumin and its Therapeutic Ap-plications, Medicinal Chemistry, 20(13), 1190-1232.
14. Kumavat, S. D.; Chaudhari, Y. S.; Borole, P.; Mishra, P.; Shen-ghani, K.; Duvvuri, P. (2013). Degradation studies of curcumin, International Journal of Pharmacy Review & Research, 3, 50–55.
15. Lopresti, A. L. (2018). The problem of curcumin and its bioa-vailability: could its gastrointestinal influence contribute to its overall health-enhancing effects? Advances in Nutrition, 9, 41–50.
16. Wang, Y-J.; Pan, M-H.; Cheng, A-L.; Lin, L-I; Ho, Y-S.; Hsieh, C-Y.; Lin, J-K. (1997). Stability of curcumin in buffer solutions and characterization of its degradation products. Journal of Pharmaceutical and Biomedical Analysis, 15, 1867–1876.
17. Cheng, K. K.; Yeung, C. F.; Ho, S. W.; Chow, S. F.; Chow, A. H.; Baum, L. Highly stabilized curcumin nanoparticles tested in an in vitro blood-brain barrier model and in Alzheimer’s disease Tg2576 mice. The AAPS Journal, 2013, 15, 324–336.
18. Cho, H. J.; Yoon, H. Y.; Koo, H.; Ko, S. H.; Shim, J. S.; Lee, J. H.; Kim, K.; Kwon, I. C.; Kim, D. D. (2011). Self-assembled na-noparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic® for tumor-targeted delivery of docetaxel. Biomateri-als, 32, 7181–7190.
19. Del Prado-Audelo, M. L.; Magaña, J. J.; Mejía-Contreras, B. A.; Borbolla-Jiménez, F. V.; Giraldo-Gomez, D. M.; Piña-Barba, M. C.; Quintanar-Guerrero, D.; Leyva-Gómez, G. (2019). In vitro cell uptake evaluation of curcumin-loaded PCL/F68 nanoparti-cles for potential application in neuronal diseases. Journal of Drug Delivery Science and Technology, 52, 905–914.
20. Pepe, G.; Calce, E.; Verdoliva, V.; Saviano, M.; Maglione, V.; Di Pardo, A.; De Luca, S. Curcumin-loaded nanoparticles based on amphiphilic hyaluronan-conjugate explored as targeting deliv-ery system for neurodegenerative disorders. International Journal of Molecular Sciences, 2020, 21, 8846.
21. Tiwari, S. K.; Agarwal, S.; Seth, B.; Yadav, A.; Nair, S.; Bhatnagar, P.; Karmakar, M.; Kumari, M.; Chauhan, L. K.; Patel, D. K. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s dis-ease model via canonical Wnt/-catenin pathway. ACS Nano, 2014, 8, 76–103.
22. Tsai, Y. M.; Chien, C. F.; Lin, L. C.; Tsai, T. H. Curcumin and its nano-formulation: The kinetics of tissue distribution and blood–brain barrier penetration. International Journal of Pharmacology, 2011, 416, 331–338.
23. Ali, P.; Kirmani, S. A. K.; Rugaie, O. A.; Azam, F. Degree-based topological indices and polynomials of hyaluronic acid-curcumin conjugates. Saudi Pharmaceutical Journal, 2020, 28, 1093–1100.
24. Charan, T. R.; Bhutto, M. A.; Bhutto, M. A.; Tunio, A. A.; Khuhro, G. M.; Khaskheli, S. A.; Mughal, A. A. “Nanomaterials of curcumin-hyaluronic acid”: Their various methods of formu-lations, clinical and therapeutic applications, present gap, and future directions. Future Journal of Pharmaceutical Sciences, 2021, 7, 126.
25. Fan, Z.; Li, J.; Liu, J.; Jiao, H.; Liu, B. Anti-inflammation and joint lubrication dual effects of a novel hyaluronic ac-id/curcumin nanomicelle improve the efficacy of rheumatoid arthritis therapy. ACS Applied Materials & Interfaces, 2018, 10, 23595–23604.
26. Mudagal M. P.; Janadri, S. Curcumin on to hyaluronic acid conjugate enhance cytotoxicity. Asian Journal of Pharmacy and Pharmacology, 2019, 5, 281–285.
27. Mudagal, P.; Janadri, S.; Taj, N. In-vivo anticancer activity of curcumin-hyaluronic acid conjugate. Advance Pharmaceutical Journal, 2019, 4, 85–89.
28. Sharma, M.; Sahu, K.; Singh S. P.; Jain, B. Wound healing activ-ity of curcumin conjugated to hyaluronic acid: In vitro and in vivo evaluation. Artificial Cells, Nanomedicine, and Biotech-nology, 2018, 46, 1009–10.
29. Yu, D.; Zhuang, Z.; Ren, J.; Hu, X.; Wang, Z.; Zhang, J.; Luo, Y.; Wang, K.; He, R.; Wang, Y. Hyaluronic acid-curcumin conju-gate suppresses the fibrotic functions of myofibroblasts from contractive joint by the PTGER2 demethylation. Regenerative Biomaterials, 2019, 6, 269–277.
30. Dubashynskaya, N. V.; Bokatyi, A. N.; Gasilova, E. R.; Dobrod-umov, A. V.; Dubrovskii, Y. A.; Knyazeva, E. S.; Nashchekina, Y. A.; Demyanova, E. V.; Skorik, Y. A. Hyaluronan-colistin conjugates: Synthesis, characterization, and prospects for med-ical applications. International Journal of Biological Macro-molecules, 2022, 215, 243–252.
31. Mitsui, Y.; Gotoh, M.; Nakama, K.; Yamada, T.; Higuchi, F.; Nagata, K. Hyaluronic acid inhibits mRNA expression of proin-flammatory cytokines and cyclooxygenase-2/prostaglandin E2 production via CD44 in interleukin-1-stimulated subacromial synovial fibroblasts from patients with rotator cuff disease. Journal of Orthopaedic Research, 2008, 26, 1032−1037.
32. Peng, Y.; Ao, M.; Dong, B.; Jiang, Y.; Yu, L.; Chen, Z.; Hu, C.; Xu, R. Anti-inflammatory effects of curcumin in the inflamma-tory diseases: Status, limitations and countermeasures. Drug Design, Development and Therapy, 2021, 15, 4503–4525.
33. Rooney, P.; Srivastava, A.; Watson, L.; Quinlan, L. R.; Pandit, A. Hyaluronic acid decreases IL-6 and IL-8 secretion and per-meability in an inflammatory model of interstitial cystitis. Acta Biomaterialia, 2015, 19, 66–75.
34. Tiwari, S.; Bahadur, P. Modified hyaluronic acid based materi-als for biomedical applications. International Journal of Bio-logical Macromolecules, 2019, 121, 556–571.
35. Majhi, A.; Rahman, G. M.; Panchal, S.; Das, J. Binding of cur-cumin and its long chain derivatives to the activator binding domain of novel protein kinase C. Bioorganic & Medicinal Chemistry, 2010, 18, 1591−1598.
36. Wang, X.; Spandidos, A.; Wang, H.; Seed, B. PrimerBank: A PCR primer database for quantitative gene expression analysis, 2012 update. Nucleic Acids Research, 2012, 40, D1144–D1149.
37. Zhang, J.; Zheng, Y.; Luo, Y.; Du, Y.; Zhang, X.; Fu, J. Curcumin inhibits LPS-induced neuroinflammation by promoting micro-glial M2 polarization via TREM2/TLR4/NF-κB pathways in BV2 cells. Molecular Immunology, 2019, 116, 29–37.
38. Traboni, S.; Esposito, F.; Ziaco, M.; Bedini, E.; Iadonisi. A. A comprehensive solvent-free approach for the esterification and amidation of carboxylic acids mediated by carbodiimides. Tet-rahedron, 2023, 133, 133291.
39. Traboni, S.; Bedini, E.; Vessella, G.; Iadonisi. A. Solvent-free approaches in carbohydrate synthetic chemistry: Role of catal-ysis in reactivity and selectivity. Catalysts, 2020, 10, 1142.
40. Bedini, E.; Cassese, E.; D’Agostino, A.; Cammarota, M.; Frezza, M. A.; Lepore, M.; Portaccio, M.; Schiraldi, C.; La Gatta, A. Self-esterified hyaluronan hydrogels: Advancements in the production with positive implications in tissue healing. Interna-tional Journal of Biological Macromolecules, 2023, 236, 123873.
41. Bhatia, N. K.; Kishor, S.; Katyal, N.; Gogoi, P.; Narang, P.; Deep, S. Effect of pH and temperature on conformational equilibria and aggregation behaviour of curcumin in aqueous binary mix-tures of ethanol. RSC Advances, 2016, 6, 103275–103288.
42. Ali, Z.; Saleem, M.; Atta, B. M.; Khan, S. S.; Hammad, G. De-termination of curcuminoid content in turmeric using fluores-cence spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 213, 192–198.
43. Mondal, S.; Ghosh, S.; Moulik, S. P. Stability of curcumin in different solvent and solution media: UV–visible steady-state fluorescence spectral study. Journal of Photochemistry and Photobiology B: Biology, 2016, 158, 212–218.
44. Marinho, A.; Nunes, C.; Reis, S. Hyaluronic acid: A key ingre-dient in the therapy of inflammation. Biomolecules, 2021, 11, 1518.
45. Hintze, V.; Schnabelrauch, M.; Rother, S. Chemical modifica-tion of hyaluronan and their biomedical applications. Frontiers in Chemistry, 2022, 10, 830671.
Microwave-Assisted, Solid-State Procedure to Covalently Conjugate Hyaluronic Acid to Curcumin: Validation of a Green Synthetic Protocol
A microwave-assisted esterification reaction to prepare hyaluronan–curcumin derivatives by employing a solvent-free process was developed. In particular, a solid-state strategy to react two molecules characterized by totally different solubility profiles was developed. Hyaluronic acid, a highly hydrosoluble polysaccharide, was reacted with hydrophobic and even water-unstable curcumin. Microwave (MW) irradiation was employed to activate the reaction between the two solid compounds through the direct interaction with them and to preserve the integrity of the sensitive curcumin species. This new protocol can be considered efficient, fast, and also eco-friendly, avoiding the employment of toxic organic bases and solvents. A cytotoxicity test suggested that the developed hyaluronan–curcumin conjugate (HA-CUR) could be considered a candidate for its implementation as a new material. In addition, preliminary studies revealed promising anti-inflammatory activity and open future perspectives of further investigation.
Microwave-Assisted, Solid-State Procedure to Covalently Conjugate Hyaluronic Acid to Curcumin: Validation of a Green Synthetic Protocol
No results.
Microwave-Assisted, Solid-State Procedure to Covalently Conjugate Hyaluronic Acid to Curcumin: Validation of a Green Synthetic Protocol