Solid-State Strategy for the S-Conjugation of Peptides Catalyzed by Zeolites and Promoted by Microwave Radiation: A Green Approach(193 views) Verdoliva V, Digilio G, De Luca S
Acs Sustainable Chemistry And Engineering, 2024; 12(5): 1809-1815.
Institute of Biostructures and Bioimaging,National Research Council, 80134 Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy. Department of Science and Technologic Innovation, Università del Piemonte Orientale “A. Avogadro”, 15121 Alessandria, Italy.
References: 1. Pennington, M. W.; Zell, B.; Bai, C. J. Commercial manufactur-ing of current good manufacturing practice peptides spanning the gamut from neoantigen to commercial large-scale products. Medicine in Drug Discovery 2021, 9, 100071.
2. Merrifield, R B. Solid-phase peptide synthesis. I. synthesis of a tetrapeptide. J Am Chem Soc. 1963, 85(14), 2149–54 1963.
3. Varnava, K. G.; Sarojini, V. Making Solid-Phase Peptide Syn-thesis Greener: A Review of the Literature. Chem. Asian J. 2019, 14, 1088-1097.
5. Galanis, A. S.; Albericio, F.; Grøtli, M. Solid-Phase Peptide Synthesis in Water Using Microwave-Assisted Heating. Org.Lett. 2009, 11,4488–4491.
6. Hojo, K.; Hara, A.; Kitai, H.; Onishi, M.; Ichikawa, H.; Fuku-mori, Y.; Kawa-saki, K. Development of a method for environ-mentally friendly chemical peptide synthesis in water using wa-ter-dispersible amino acid nanoparticles. Chem. Cent. J. 2011, 5, 49.
7. Hojo, K.; Ichikawa, H.; Maeda, M.; Kida, S.; Fukumori, Y.; Kawasaki, K. Solid-phase peptide synthesis using nanoparticu-late amino acids in water. J. Pept. Sci. 2007, 13, 493–497.
8. Hojo, K.; Ichikawa, H.; Onishi, M.; Fukumori, Y.; Kawasaki, K. Peptide synthesis 'in water'by a solution‐phase method using water‐dispersible nanoparticle Boc‐amino acid. J. Pept.Sci. 2011, 17, 487–492.
9. Mattellone, A.; Corbisiero, D.; Ferrazzano, L.; Cantelmi, P.; Martelli, G.; Palladino, C.; Tolomelli, A.; Cabri, W. Speeding up sustainable solution-phase peptide synthesis using T3P® as a green coupling reagent: methods and challenges. Green Chem. 2023, 25, 2563-2571.
10. Al Musaimi, O.; Wisdom, R.; Talbiersky, P.; De La Torre, B. G.; Albericio, F. Propylphosphonic Anhydride (T3P®) as Coupling Reagent for Solid‐Phase Peptide Synthesis. ChemistrySelect, 2021, 6, 2649-2657.
11. Sharma, A.; Kumar, A.; de la Torre B. G.; Albericio, F. Liquid-Phase Peptide Synthesis (LPPS): A Third Wave for the Prepara-tion of Peptides. Chem. Rev., 2022, 122, 13516–13546.
12. Ferrazzano, L.; Catani, M.; Cavazzini, A.; Martelli, G.; Corbisie-ro, D.; Cantelmi, P.; Fantoni, T.; Mattellone, A.; De Luca, C.; Felletti, S.; Cabri, W.; Tolomelli, A. Sustainability in peptide chemistry: Current synthesis and purification technologies and future challenges. Green Chem, 2022, 24, 975-1020.
13. Calce E.; De Luca S. The Cysteine S-Alkylation Reaction as a Synthetic Method to Covalently Modify Peptide Sequences. Chem.Eur.J. 2017, 23, 224 –233.
14. Calce, E.; Leone, M.; Mercurio, F. A.; Monfregola, L.; De Luca, S. Solid-Phase S‐Alkylation Promoted by Molecular Sieves. Org. Lett. 2015, 17, 5646−5649.
15. Verdoliva, V.; Digilio, G.; Saviano, M.; De Luca, S. Microwave Heating Promotes the S-Alkylation of Aziridine Catalyzed by Molecular Sieves: A Post-Synthetic Approach to Lanthionine-Containing Peptides. Molecules 2021, 26, 6135.
16. Gong, X.; Çağlayan, M.; Ye,Y.; Liu, K.; Gascon, J.; Chowdhury, A. D. First-Generation Organic Reaction Intermediates in Zeo-lite Chemistry and Catalysis. Chem. Rev. 2022, 122, 14275−14345.
17. Lima, C.G.S.; Moreira, N.M.; Paixão, M.W.; Corrêa, A.G. Heter-ogenous green catalysis: Application of zeolites on multicom-ponent reactions. Curr. Opin. Green Sustain. Chem. 2019, 15, 7-12.
19. Métro, T-X.; Bantreil, X.; Martinez, J.; Lamaty, F. Solvent‐free Chemistry. Biphasic Chemistry and The Solvent Case 2020, 3, 169-215.
20. Loupy, A. Solvent-free microwave organic synthesis as an effi-cient procedure for green chemistry. C. R. Chimie 2004, 7, 103–111.
21. Varma, R. S. Solvent-Free Organic Syntheses Using Supported Reagents and Microwave Irradiation. Green Chem. 1999, 1, 43-55.
22. Martina, K.; Cravotto, G.; Varma, R. S. Impact of Microwaves on Organic Synthesis and Strategies toward Flow Processes and Scaling Up. J. Org. Chem. 2021, 86, 20, 13857–13872.
23. Leonardi, M.; Villacampa, M.; Menéndez, J. C. Multicomponent mechanochemical synthesis. Chem. Sci. 2018, 9, 2042-2064.
24. DeGroot, H.P.; Hanusa, T. P. Solvate-Assisted Grinding: Metal Solvates as Solvent Sources in Mechanochemically Driven Or-ganometallic Reactions. Organometallics 2021, 40, 3516−3525.
25. Achar, T. K.; Boseand, A.; Mal, P. Mechanochemical synthesis of small organic molecules. J. Org. Chem. 2017, 13, 1907–1931.
27. André, V.; Gomes, C.S.B.; Duarte, M.T. Mechanochemistry: A Tool in the Synthesis of Catalysts, Metallodrugs, and Metallo-pharmaceuticals. ISBN: 9781118510148. 493 – 499.
28. Maurin, O.; Verdié, P.; Subra, G.; Lamaty, F.; Martinez, J.; Métro, T-X. Peptide synthesis: ball-milling, in solution, or on solid support, what is the best strategy? Beilstein J. Org. Chem. 2017, 13, 2087-2093.
29. Bento, O.; Luttringer, F.; El Dine, T. M.; Pétry, N.; Bantreil, X.; Lamaty, F. Sustainable Mechanosynthesis of Biologically Ac-tive Molecules. Eur. J. Org. Chem. 2022, e202101516.
30. Verdoliva, V.; Digilio, D.; Saviano, M.; De Luca, S. Thio-conjugation of substituted benzofurazans to peptides: molecu-lar sieves catalyze nucleophilic attack on unsaturated fused rings. Catal. Sci. Technol. 2021, 11, 1067-1076.
31. Calce, E.; Leone, M.; Monfregola, L.; De Luca, S. Lipidated peptides via post-synthetic thioalkylation promoted by molecu-lar sieves. Amino Acids 2014, 46, 1899-1905.
32. De Luca, S.; Digilio, G.; Verdoliva, V.; Saviano, M.; Menchise, V.; Tovillas, P.; Jiménez-Osés, G.; Peregrina, J.M. A Late-Stage synthetic approach to lanthionine-containing peptides via S-alkylation on cyclic sulfamidates promoted by molecular sieves. Org. Lett. 2018, 20, 7478–7482.
33. De Luca, S.; Digilio, G.; Verdoliva, V.; Tovillas, P.; Jiménez-Osés, G.; Peregrina, J.M. Lanthionine Peptides by S-Alkylation with Substituted Cyclic Sulfamidates Promoted by Activated Molecular Sieves: Effects of the Sulfamidate Structure on the Yield. J. Org. Chem. 2019, 84, 14957–14964.
34. Alder, C. M.; Hayler, G. D.; Henderson, R. K.; Redman, A. M.; Shukla, L.; Shuster, E. L.; Sneddon, H. F. Updating and further expanding GSK’s solvent sustainability guide. Green Chem. 2016, 18, 3879-3890.
35. Roschangar, F.; Colberg, J. Green Chemistry Metrics. Wiley Online Library, 2018, 1-19. DOI: 10.1002/9781119288152.ch1.
36. . Monteith, E. R.; Mampuys, P.; Summerton, L.; Clark, G. H.; Maes, B. U. W.; McElroy, C. R. Why we might be misusing pro-cess mass intensity (PMI) and a methodology to apply it effec-tively as a discovery level metric. Green Chem. 2020, 22, 123-135.
Solid-State Strategy for the S-Conjugation of Peptides Catalyzed by Zeolites and Promoted by Microwave Radiation: A Green Approach
A green synthetic protocol to add a chemical function to a fully deprotected peptide to obtain a bioactive and/or fluorescent-labeled conjugate is reported. A range of S-conjugation reactions promoted by the commercially available LTA zeolite to introduce different substituents on peptide cysteine residues has been shown to take place in the solid state or in the presence of minimal amounts of organic solvent, with yields that are comparable to those of standard solution methods. The additional advantage of the procedure consists of easing the work up, for which green solvents, such as aqueous systems, can be employed. The protocol is implemented with microwave irradiation to shorten the reaction time as dielectric heating increases the diffusion rates of the mechanically milled reactants.
Solid-State Strategy for the S-Conjugation of Peptides Catalyzed by Zeolites and Promoted by Microwave Radiation: A Green Approach
No results.
Solid-State Strategy for the S-Conjugation of Peptides Catalyzed by Zeolites and Promoted by Microwave Radiation: A Green Approach