Flexibility of brain dynamics is increased and predicts clinical impairment in relapsing-remitting but not in secondary progressive multiple sclerosis(4 views) Cipriano L, Minino R, Liparoti M, Polverino A, Romano A, Bonavita S, Pirozzi MA, Quarantelli M, Jirsa V, Sorrentino G, Sorrentino P, Troisi Lopez E
Department of Medical, Motor and Wellness Sciences, University of Naples 'Parthenope', 80133 Naples, Italy.
Department of Philosophical, Pedagogical and Quantitative-Economic Sciences, University of Chieti-Pescara 'G. d'Annunzio', 66100 Chieti, Italy.
Institute of Diagnosis and Therapy Hermitage Capodimonte, 80145 Naples, Italy.
Department of Advanced Medical and Surgical Sciences, University of Campania 'L. Vanvitelli', 81100 Naples, Italy.
Biostructure and Bioimaging Institute, CNR, 80145 Naples, Italy.
Institut de Neurosciences des Systèmes, Inserm, INS, Aix-Marseille University, 13005 Marseille, France.
Institute of Applied Sciences and Intelligent Systems, National Research Council, 80078 Pozzuoli, Italy.
Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy.
References: Not available.
Flexibility of brain dynamics is increased and predicts clinical impairment in relapsing-remitting but not in secondary progressive multiple sclerosis
Large-scale brain activity has long been investigated under the erroneous assumption of stationarity. Nowadays, we know that resting-state functional connectivity is characterized by aperiodic, scale-free bursts of activity (i.e. neuronal avalanches) that intermittently recruit different brain regions. These different patterns of activity represent a measure of brain flexibility, whose reduction has been found to predict clinical impairment in multiple neurodegenerative diseases such as Parkinson's disease, amyotrophic lateral sclerosis and Alzheimer's disease. Brain flexibility has been recently found increased in multiple sclerosis, but its relationship with clinical disability remains elusive. Also, potential differences in brain dynamics according to the multiple sclerosis clinical phenotypes remain unexplored so far. We performed a brain dynamics study quantifying brain flexibility utilizing the 'functional repertoire' (i.e. the number of configurations of active brain areas) through source reconstruction of magnetoencephalography signals in a cohort of 25 multiple sclerosis patients (10 relapsing-remitting multiple sclerosis and 15 secondary progressive multiple sclerosis) and 25 healthy controls. Multiple sclerosis patients showed a greater number of unique reconfigurations at fast time scales as compared with healthy controls. This difference was mainly driven by the relapsing-remitting multiple sclerosis phenotype, whereas no significant differences in brain dynamics were found between secondary progressive multiple sclerosis and healthy controls. Brain flexibility also showed a different predictive power on clinical disability according to the multiple sclerosis type. For the first time, we investigated brain dynamics in multiple sclerosis patients through high temporal resolution techniques, unveiling differences in brain flexibility according to the multiple sclerosis phenotype and its relationship with clinical disability.
Flexibility of brain dynamics is increased and predicts clinical impairment in relapsing-remitting but not in secondary progressive multiple sclerosis
Kim YH, Shin SW, Pellicano R, Fagoonee S, Choi IJ, Kim YI, Park B, Choi JM, Kim SG, Choi J, Park JY, Oh S, Yang HJ, Lim JH, Im JP, Kim JS, Jung HC, Ponzetto A, Figura N, Malfertheiner P, Choi IJ, Kook MC, Kim YI, Cho SJ, Lee JY, Kim CG, Park B, Nam BH, Bae SE, Choi KD, Choe J, Kim SO, Na HK, Choi JY, Ahn JY, Jung KW, Lee J, Kim DH, Chang HS, Song HJ, Lee GH, Jung HY, Seta T, Takahashi Y, Noguchi Y, Shikata S, Sakai T, Sakai K, Yamashita Y, Nakayama T, Leja M, Park JY, Murillo R, Liepniece-karele I, Isajevs S, Kikuste I, Rudzite D, Krike P, Parshutin S, Polaka I, Kirsners A, Santare D, Folkmanis V, Daugule I, Plummer M, Herrero R, Tsukamoto T, Nakagawa M, Kiriyama Y, Toyoda T, Cao X, Corral JE, Mera R, Dye CW, Morgan DR, Lee YC, Lin JT, Garcia Martin R, Matia Cubillo A, Lee SH, Park JM, Han YM, Ko WJ, Hahm KB, Leontiadis GI, Ford AC, Ichinose M, Sugano K, Jeong M, Park JM, Han YM, Park KY, Lee DH, Yoo JH, Cho JY, Hahm KB, Bang CS, Baik GH, Shin IS, Kim JB, Suk KT, Yoon JH, Kim YS, Kim DJ * Helicobacter pylori Eradication for Prevention of Metachronous Recurrence after Endoscopic Resection of Early Gastric Cancer(513 views) N Engl J Med (ISSN: 0028-4793, 0028-4793linking, 1533-4406electronic), 2015 Jun; 30642104201566393291: 749-756. Impact Factor:59.558 ViewExport to BibTeXExport to EndNote
Testino G, Leone S, Fagoonee S, Del Bas JM, Rodriguez B, Puiggros F, Marine S, Rodriguez MA, Morina D, Armengol L, Caimari A, Arola L, Cimini FA, Barchetta I, Carotti S, Bertoccini L, Baroni MG, Vespasiani-gentilucci U, Cavallo MG, Morini S, Nelson JE, Roth CL, Wilson LA, Yates KP, Aouizerat B, Morgan-stevenson V, Whalen E, Hoofnagle A, Mason M, Gersuk V, Yeh MM, Kowdley KV, Lee SM, Jun DW, Cho YK, Jang KS, Kucukazman M, Ata N, Dal K, Yeniova AO, Kefeli A, Basyigit S, Aktas B, Akin KO, Agladioglu K, Ure OS, Topal F, Nazligul Y, Beyan E, Ertugrul DT, Catena C, Cosma C, Camozzi V, Plebani M, Ermani M, Sechi LA, Fallo F, Goto Y, Ray MB, Mendenhall CL, French SW, Gartside PS Serum vitamin A deficiency and increased intrahepatic expression of cytokeratin antigen in alcoholic liver disease(669 views) Hepatology (ISSN: 1827-1669electronic, 0026-4806linking), 1988 Sep; 83120693611123109(5): 1019-1026. Impact Factor:0.913 ViewExport to BibTeXExport to EndNote
84 Records (79 excluding Abstracts). Total impact factor: 406.498 (391.205 excluding Abstracts). Total 5 year impact factor: 329.348 (315 excluding Abstracts).