Dehhaghi, M.; Mohammadipanah, F.; Guillemin, G.J. Myxobacterial natural products: An under-valued source of products for drug discovery for neurological disorders. NeuroToxicology2018, 66, 195–203. [Google Scholar] [CrossRef] [PubMed]
Gomes, N.G.M.; Campos, M.G.; Órfão, J.M.C.; Ribeiro, C.A.F. Plants with neurobiological activity as potential targets for drug discovery. Prog. Neuro-Psychopharmacol. Biol. Psychiatry2009, 33, 1372–1389. [Google Scholar] [CrossRef] [PubMed]
Marasco, D.; Vicidomini, C.; Krupa, P.; Cioffi, F.; Huy, P.D.Q.; Li, M.S.; Florio, D.; Broersen, K.; De Pandis, M.F.; Roviello, G.N. Plant isoquinoline alkaloids as potential neurodrugs: A comparative study of the effects of benzo[c]phenanthridine and berberine-based compounds on β-amyloid aggregation. Chem.-Biol. Interact.2021, 334, 109300. [Google Scholar] [CrossRef] [PubMed]
Rezaul Islam, M.; Akash, S.; Murshedul Islam, M.; Sarkar, N.; Kumer, A.; Chakraborty, S.; Dhama, K.; Ahmed Al-Shaeri, M.; Anwar, Y.; Wilairatana, P.; et al. Alkaloids as drug leads in Alzheimer’s treatment: Mechanistic and therapeutic insights. Brain Res.2024, 1834, 148886. [Google Scholar] [CrossRef]
Kanakala, G.C.; Devata, S.; Chatterjee, P.; Priyakumar, U.D. Generative artificial intelligence for small molecule drug design. Curr. Opin. Biotechnol.2024, 89, 103175. [Google Scholar] [CrossRef]
Srivastava, P.; Tiwari, A. Critical Role of Computer Simulations in Drug Discovery and Development. Curr. Top. Med. Chem.2017, 17, 2422–2432. [Google Scholar] [CrossRef]
Raees, M.; Meijerink, I.; Lykourentzou, I.; Khan, V.-J.; Papangelis, K. From explainable to interactive AI: A literature review on current trends in human-AI interaction. Int. J. Hum.-Comput. Stud.2024, 189, 103301. [Google Scholar] [CrossRef]
Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Sci.2019, 20, 4331. [Google Scholar] [CrossRef]
Van Schependom, J.; D’haeseleer, M. Advances in Neurodegenerative Diseases. J. Clin. Med.2023, 12, 1709. [Google Scholar] [CrossRef]
Walker, K.A.; Chen, J.; Shi, L.; Yang, Y.; Fornage, M.; Zhou, L.; Schlosser, P.; Surapaneni, A.; Grams, M.E.; Duggan, M.R.; et al. Proteomics analysis of plasma from middle-aged adults identifies protein markers of dementia risk in later life. Sci. Transl. Med.2023, 15, eadf5681. [Google Scholar] [CrossRef]
Kamboh, M.I.; Minster, R.L.; Kenney, M.; Ozturk, A.; Desai, P.P.; Kammerer, C.M.; DeKosky, S.T. Alpha-1-antichymotrypsin (ACT or SERPINA3) polymorphism may affect age-at-onset and disease duration of Alzheimer’s disease. Neurobiol. Aging2006, 27, 1435–1439. [Google Scholar] [CrossRef]
Bellenguez, C.; Küçükali, F.; Jansen, I.E.; Kleineidam, L.; Moreno-Grau, S.; Amin, N.; Naj, A.C.; Campos-Martin, R.; Grenier-Boley, B.; Andrade, V.; et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet.2022, 54, 412–436. [Google Scholar] [CrossRef]
Kamboh, M.I.; Demirci, F.Y.; Wang, X.; Minster, R.L.; Carrasquillo, M.M.; Pankratz, V.S.; Younkin, S.G.; Saykin, A.J.; Alzheimer’s Disease Neuroimaging Initiative; Jun, G.; et al. Genome-wide association study of Alzheimer’s disease. Transl. Psychiatry2012, 2, e117. [Google Scholar] [CrossRef]
Silva, M.V.F.; Loures, C.d.M.G.; Alves, L.C.V.; de Souza, L.C.; Borges, K.B.G.; Carvalho, M.d.G. Alzheimer’s disease: Risk factors and potentially protective measures. J. Biomed. Sci.2019, 26, 33. [Google Scholar] [CrossRef] [PubMed]
Breijyeh, Z.; Karaman, R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules2020, 25, 5789. [Google Scholar] [CrossRef] [PubMed]
Iravanpour, F.; Dargahi, L.; Rezaei, M.; Haghani, M.; Heidari, R.; Valian, N.; Ahmadiani, A. Intranasal insulin improves mitochondrial function and attenuates motor deficits in a rat 6-OHDA model of Parkinson’s disease. CNS Neurosci. Ther.2021, 27, 308–319. [Google Scholar] [CrossRef] [PubMed]
Caberlotto, L.; Nguyen, T.P.; Lauria, M.; Priami, C.; Rimondini, R.; Maioli, S.; Cedazo-Minguez, A.; Sita, G.; Morroni, F.; Corsi, M.; et al. Cross-disease analysis of Alzheimer’s disease and type-2 diabetes highlights the role of autophagy in the pathophysiology of two highly comorbid diseases. Sci. Rep.2019, 9, 3965. [Google Scholar] [CrossRef]
Baduini, I.R.; Castro Vildosola, J.E.; Kavehmoghaddam, S.; Kiliç, F.; Nadeem, S.A.; Nizama, J.J.; Rowand, M.A.; Annapureddy, D.; Bryan, C.A.; Do, L.H.; et al. Type 2 diabetes mellitus and neurodegenerative disorders: The mitochondrial connection. Pharmacol. Res.2024, 209, 107439. [Google Scholar] [CrossRef]
Sensi, S.L.; Russo, M.; Tiraboschi, P. Biomarkers of diagnosis, prognosis, pathogenesis, response to therapy: Convergence or divergence? Lessons from Alzheimer’s disease and synucleinopathies. In Precision Medicine in Neurodegenerative Disorders, Part I; Elsevier: Amsterdam, The Netherlands, 2023; pp. 187–218. [Google Scholar]
Tsoi, P.S.; Quan, M.D.; Ferreon, J.C.; Ferreon, A.C.M. Aggregation of Disordered Proteins Associated with Neurodegeneration. Int. J. Mol. Sci.2023, 24, 3380. [Google Scholar] [CrossRef]
Zhang, A.; Pan, C.; Wu, M.; Lin, Y.; Chen, J.; Zhong, N.; Zhang, R.; Pu, L.; Han, L.; Pan, H. Causal association between plasma metabolites and neurodegenerative diseases. Prog. Neuro-Psychopharmacol. Biol. Psychiatry2024, 134, 111067. [Google Scholar] [CrossRef]
Fornito, A.; Zalesky, A.; Breakspear, M. The connectomics of brain disorders. Nat. Rev. Neurosci.2015, 16, 159–172. [Google Scholar] [CrossRef]
Starr, A.; Sattler, R. Synaptic dysfunction and altered excitability in C9ORF72 ALS/FTD. Brain Res.2018, 1693, 98–108. [Google Scholar] [CrossRef]
Pohl, C.; Dikic, I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science2019, 366, 818–822. [Google Scholar] [CrossRef] [PubMed]
Komatsu, M.; Waguri, S.; Chiba, T.; Murata, S.; Iwata, J.-i.; Tanida, I.; Ueno, T.; Koike, M.; Uchiyama, Y.; Kominami, E.; et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature2006, 441, 880–884. [Google Scholar] [CrossRef] [PubMed]
Ghosh, A.; Singh, S. Regulation of Microtubule: Current Concepts and Relevance to Neurodegenerative Diseases. CNS Neurol. Disord.-Drug Targets2022, 21, 656–679. [Google Scholar] [CrossRef] [PubMed]
Cartelli, D.; Cappelletti, G. Microtubule Destabilization Paves the Way to Parkinson’s Disease. Mol. Neurobiol.2016, 54, 6762–6774. [Google Scholar] [CrossRef] [PubMed]
McDonald, T.S.; Lerskiatiphanich, T.; Woodruff, T.M.; McCombe, P.A.; Lee, J.D. Potential mechanisms to modify impaired glucose metabolism in neurodegenerative disorders. J. Cereb. Blood Flow Metab.2022, 43, 26–43. [Google Scholar] [CrossRef]
Procaccini, C.; Santopaolo, M.; Faicchia, D.; Colamatteo, A.; Formisano, L.; de Candia, P.; Galgani, M.; De Rosa, V.; Matarese, G. Role of metabolism in neurodegenerative disorders. Metabolism2016, 65, 1376–1390. [Google Scholar] [CrossRef]
Tiwari, V.; Wilson, D.M. DNA Damage and Associated DNA Repair Defects in Disease and Premature Aging. Am. J. Hum. Genet.2019, 105, 237–257. [Google Scholar] [CrossRef]
Swinnen, B.; Robberecht, W.; Van Den Bosch, L. RNA toxicity in non-coding repeat expansion disorders. EMBO J.2019, 39, e101112. [Google Scholar] [CrossRef]
Sun, Y.; Yu, H.; Guan, Y. Glia Connect Inflammation and Neurodegeneration in Multiple Sclerosis. Neurosci. Bull.2023, 39, 466–478. [Google Scholar] [CrossRef]
Anwar, S.; Rivest, S. Alzheimer’s disease: Microglia targets and their modulation to promote amyloid phagocytosis and mitigate neuroinflammation. Expert Opin. Ther. Targets2020, 24, 331–344. [Google Scholar] [CrossRef]
Wilson, D.M.; Cookson, M.R.; Van Den Bosch, L.; Zetterberg, H.; Holtzman, D.M.; Dewachter, I. Hallmarks of neurodegenerative diseases. Cell2023, 186, 693–714. [Google Scholar] [CrossRef] [PubMed]
Cras, P.; van Harskamp, F.; Hendriks, L.; Ceuterick, C.; van Duijn, C.M.; Stefanko, S.Z.; Hofman, A.; Kros, J.M.; Van Broeckhoven, C.; Martin, J.J.; et al. Presenile Alzheimer dementia characterized by amyloid angiopathy and large amyloid core type senile plaques in the APP 692Ala→Gly mutation. Acta Neuropathol.1998, 96, 253–260. [Google Scholar] [CrossRef] [PubMed]
Pascoal, T.A.; Aguzzoli, C.S.; Lussier, F.Z.; Crivelli, L.; Suemoto, C.K.; Fortea, J.; Rosa-Neto, P.; Zimmer, E.R.; Ferreira, P.C.L.; Bellaver, B. Insights into the use of biomarkers in clinical trials in Alzheimer’s disease. EBioMedicine2024, 108, 105322. [Google Scholar] [CrossRef]
Thomas, J.; Wilson, S. Molecular and therapeutic targets for amyloid-beta plaques in Alzheimer’s disease: A review study. Basic Clin. Neurosci.2024, 15, 1–26. [Google Scholar] [CrossRef]
Nalivaeva, N.N.; Turner, A.J. The amyloid precursor protein: A biochemical enigma in brain development, function and disease. FEBS Lett.2013, 587, 2046–2054. [Google Scholar] [CrossRef]
Belyaev, N.D.; Kellett, K.A.B.; Beckett, C.; Makova, N.Z.; Revett, T.J.; Nalivaeva, N.N.; Hooper, N.M.; Turner, A.J. The Transcriptionally Active Amyloid Precursor Protein (APP) Intracellular Domain Is Preferentially Produced from the 695 Isoform of APP in a β-Secretase-dependent Pathway. J. Biol. Chem.2010, 285, 41443–41454. [Google Scholar] [CrossRef]
Zhang, X.; Zhang, C.M.; Prokopenko, D.; Liang, Y.; Zhen, S.Y.; Weigle, I.Q.; Han, W.; Aryal, M.; Tanzi, R.E.; Sisodia, S.S. An APP ectodomain mutation outside of the Aβ domain promotes Aβ production in vitro and deposition in vivo. J. Exp. Med.2021, 218, e20210313. [Google Scholar] [CrossRef]
Cruts, M.; Theuns, J.; Van Broeckhoven, C. Locus-specific mutation databases for neurodegenerative brain diseases. Hum. Mutat.2012, 33, 1340–1344. [Google Scholar] [CrossRef]
Goedert, M.; Spillantini, M.G.; Jakes, R.; Rutherford, D.; Crowther, R.A. Multiple isoforms of human microtubule-associated protein tau: Sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron1989, 3, 519–526. [Google Scholar] [CrossRef] [PubMed]
Arastoo, M.; Penny, L.K.; Lofthouse, R.; Abdallah, A.; Abrahamsson, A.; Marini, P.; Melis, V.; Riedel, G.; Harrington, C.R.; Wischik, C.M.; et al. High-affinity antibodies specific to the core region of the tau protein exhibit diagnostic and therapeutic potential for Alzheimer’s disease. Alzheimers Res. Ther.2024, 16, 209. [Google Scholar] [CrossRef] [PubMed]
Ballatore, C.; Lee, V.M.Y.; Trojanowski, J.Q. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev. Neurosci.2007, 8, 663–672. [Google Scholar] [CrossRef]
Sergeant, N.; David, J.P.; Lefranc, D.; Vermersch, P.; Wattez, A.; Delacourte, A. Different distribution of phosphorylated tau protein isoforms in Alzheimer’s and Pick’s diseases. FEBS Lett.1997, 412, 578–582. [Google Scholar] [CrossRef]
Stanford, P.M.; Halliday, G.M.; Brooks, W.S.; Kwok, J.B.J.; Storey, C.E.; Creasey, H.; Morris, J.G.L.; Fulham, M.J.; Schofield, P.R. Progressive supranuclear palsy pathology caused by a novel silent mutation in exon 10 of the tau gene. Brain2000, 123, 880–893. [Google Scholar] [CrossRef]
Andrade-Guerrero, J.; Santiago-Balmaseda, A.; Jeronimo-Aguilar, P.; Vargas-Rodríguez, I.; Cadena-Suárez, A.R.; Sánchez-Garibay, C.; Pozo-Molina, G.; Méndez-Catalá, C.F.; Cardenas-Aguayo, M.-d.-C.; Diaz-Cintra, S.; et al. Alzheimer’s Disease: An Updated Overview of Its Genetics. Int. J. Mol. Sci.2023, 24, 3754. [Google Scholar] [CrossRef]
Dugger, B.N.; Dickson, D.W. Pathology of Neurodegenerative Diseases. Cold Spring Harb. Perspect. Biol.2017, 9, a028035. [Google Scholar] [CrossRef]
Phelps, M.E.; Huang, S.C.; Hoffman, E.J.; Selin, C.; Sokoloff, L.; Kuhl, D.E. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: Validation of method. Ann. Neurol.1979, 6, 371–388. [Google Scholar] [CrossRef]
Kato, T.; Inui, Y.; Nakamura, A.; Ito, K. Brain fluorodeoxyglucose (FDG) PET in dementia. Ageing Res. Rev.2016, 30, 73–84. [Google Scholar] [CrossRef]
Jansen, W.J.; Janssen, O.; Tijms, B.M.; Vos, S.J.B.; Ossenkoppele, R.; Visser, P.J.; Aarsland, D.; Alcolea, D.; Altomare, D.; von Arnim, C.; et al. Prevalence Estimates of Amyloid Abnormality Across the Alzheimer Disease Clinical Spectrum. JAMA Neurol.2022, 79, 228–243. [Google Scholar] [CrossRef] [PubMed]
Singh, M.K.; Shin, Y.; Ju, S.; Han, S.; Kim, S.S.; Kang, I. Comprehensive Overview of Alzheimer’s Disease: Etiological Insights and Degradation Strategies. Int. J. Mol. Sci.2024, 25, 6901–6929. [Google Scholar] [CrossRef] [PubMed]
Graff-Radford, J.; Yong, K.X.X.; Apostolova, L.G.; Bouwman, F.H.; Carrillo, M.; Dickerson, B.C.; Rabinovici, G.D.; Schott, J.M.; Jones, D.T.; Murray, M.E. New insights into atypical Alzheimer’s disease in the era of biomarkers. Lancet Neurol.2021, 20, 222–234. [Google Scholar] [CrossRef] [PubMed]
Narasimhan, S.; Holtzman, D.M.; Apostolova, L.G.; Cruchaga, C.; Masters, C.L.; Hardy, J.; Villemagne, V.L.; Bell, J.; Cho, M.; Hampel, H. Apolipoprotein E in Alzheimer’s disease trajectories and the next-generation clinical care pathway. Nat. Neurosci.2024, 27, 1236–1252. [Google Scholar] [CrossRef]
Gan-Or, Z. Clinical genetic testing in Parkinson’s disease should become part of routine patient care. Brain2024, 147, 2595–2597. [Google Scholar] [CrossRef]
Mouro Pinto, R.; Murtha, R.; Azevedo, A.; Douglas, C.; Kovalenko, M.; Ulloa, J.; Crescenti, S.; Burch, Z.; Oliver, E.; Vitalo, A.; et al. Identification of genetic modifiers of Huntington’s disease somatic CAG repeat instability by in vivo CRISPR-Cas9 genome editing. bioRxiv2024. [Google Scholar] [CrossRef]
Nijs, M.; Van Damme, P. The genetics of amyotrophic lateral sclerosis. Curr. Opin. Neurol.2024, 37, 560–569. [Google Scholar] [CrossRef]
Jalaleddini, K.; Jakimovski, D.; Keshavan, A.; McCurdy, S.; Leyden, K.; Qureshi, F.; Ghoreyshi, A.; Bergsland, N.; Dwyer, M.G.; Ramanathan, M.; et al. Proteomic signatures of physical, cognitive, and imaging outcomes in multiple sclerosis. Ann. Clin. Transl. Neurol.2024, 11, 729–743. [Google Scholar] [CrossRef]
Stanzione, F.; Giangreco, I.; Cole, J.C. Use of molecular docking computational tools in drug discovery. Prog. Med. Chem.2021, 60, 273–343. [Google Scholar]
Dias, R.; de Azevedo, W., Jr. Molecular Docking Algorithms. Curr. Drug Targets2008, 9, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
Musumeci, D.; Ullah, S.; Ikram, A.; Roviello, G.N. Novel insights on nucleopeptide binding: A spectroscopic and In Silico investigation on the interaction of a thymine-bearing tetrapeptide with a homoadenine DNA. J. Mol. Liq.2022, 347, 117975. [Google Scholar] [CrossRef]
Roviello, V.; Musumeci, D.; Mokhir, A.; Roviello, G.N. Evidence of protein binding by a nucleopeptide based on a thyminedecorated L-diaminopropanoic acid through CD and in silico studies. Curr. Med. Chem.2021, 28, 5004–5015. [Google Scholar] [CrossRef] [PubMed]
Riccardi, C.; Meyer, A.; Vasseur, J.-J.; Cavasso, D.; Russo Krauss, I.; Paduano, L.; Morvan, F.; Montesarchio, D. Design, synthesis and characterization of cyclic NU172 analogues: A biophysical and biological insight. Int. J. Mol. Sci.2020, 21, 3860. [Google Scholar] [CrossRef]
Rees, T.M.; Brimijoin, S. The role of acetylcholinesterase in the pathogenesis of Alzheimer’s disease. Drugs of Today2003, 39, 75–83. [Google Scholar] [CrossRef]
Peitzika, S.-C.; Pontiki, E. A Review on Recent Approaches on Molecular Docking Studies of Novel Compounds Targeting Acetylcholinesterase in Alzheimer Disease. Molecules2023, 28, 1084. [Google Scholar] [CrossRef]
Ramalingam, A.; Sambandam, S.; Medimagh, M.; Al-Dossary, O.; Issaoui, N.; Wojcik, M.J. Study of a new piperidone as an anti-Alzheimer agent: Molecular docking, electronic and intermolecular interaction investigations by DFT method. J. King Saud Univ. -Sci.2021, 33, 101632. [Google Scholar] [CrossRef]
Kısa, D.; Korkmaz, N.; Taslimi, P.; Tuzun, B.; Tekin, Ş.; Karadag, A.; Şen, F. Bioactivity and molecular docking studies of some nickel complexes: New analogues for the treatment of Alzheimer, glaucoma and epileptic diseases. Bioorganic Chem.2020, 101, 104066. [Google Scholar] [CrossRef] [PubMed]
Gnanaraj, C.; Sekar, M.; Fuloria, S.; Swain, S.S.; Gan, S.H.; Chidambaram, K.; Rani, N.N.I.M.; Balan, T.; Stephenie, S.; Lum, P.T.; et al. In Silico Molecular Docking Analysis of Karanjin against Alzheimer’s and Parkinson’s Diseases as a Potential Natural Lead Molecule for New Drug Design, Development and Therapy. Molecules2022, 27, 2834. [Google Scholar] [CrossRef] [PubMed]
Ramsay, R.R. Molecular aspects of monoamine oxidase B. Prog. Neuro-Psychopharmacol. Biol. Psychiatry2016, 69, 81–89. [Google Scholar] [CrossRef]
Thomas, T. Monoamine oxidase-B inhibitors in the treatment of Alzheimers disease. Neurobiol. Aging2000, 21, 343–348. [Google Scholar] [CrossRef]
El Aissouq, A.; Bouachrine, M.; Ouammou, A.; Khalil, F. Homology modeling, virtual screening, molecular docking, molecular dynamic (MD) simulation, and ADMET approaches for identification of natural anti-Parkinson agents targeting MAO-B protein. Neurosci. Lett.2022, 786, 136803. [Google Scholar] [CrossRef]
Stefanis, L. α-Synuclein in Parkinson’s disease. Cold Spring Harb. Perspect. Med.2012, 2, a009399. [Google Scholar] [CrossRef]
Lücking, C.; Brice*, A. Alpha-synuclein and Parkinson’s disease. Cell. Mol. Life Sci. CMLS2000, 57, 1894–1908. [Google Scholar] [CrossRef]
Bendor, J.T.; Logan, T.P.; Edwards, R.H. The function of α-synuclein. Neuron2013, 79, 1044–1066. [Google Scholar] [CrossRef]
Rondón-Villarreal, P.; López, W.O.C. Identification of potential natural neuroprotective molecules for Parkinson’s disease by using chemoinformatics and molecular docking. J. Mol. Graph. Model.2020, 97, 107547. [Google Scholar] [CrossRef]
Berry, M.; Juorio, A.; Li, X.-M.; Boulton, A. Aromatic L-amino acid decarboxylase: A neglected and misunderstood enzyme. Neurochem. Res.1996, 21, 1075–1087. [Google Scholar] [CrossRef] [PubMed]
Tilgmann, C.; Ulmanen, I. Purification methods of mammalian catechol-O-methyltransferases. J. Chromatogr. B Biomed. Sci. Appl.1996, 684, 147–161. [Google Scholar] [CrossRef]
Formica, J.; Regelson, W. Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol.1995, 33, 1061–1080. [Google Scholar] [CrossRef] [PubMed]
Ricci, A.; Roviello, G.N. Exploring the Protective Effect of Food Drugs against Viral Diseases: Interaction of Functional Food Ingredients and SARS-CoV-2, Influenza Virus, and HSV. Life2023, 13, 402. [Google Scholar] [CrossRef] [PubMed]
Roviello, V.; Gilhen-Baker, M.; Vicidomini, C.; Roviello, G.N. The healing power of clean rivers: In silico evaluation of the antipsoriatic potential of apiin and hyperoside plant metabolites contained in river waters. Int. J. Environ. Res. Public Health2022, 19, 2502. [Google Scholar] [CrossRef] [PubMed]
Boyina, H.K.; Geethakhrishnan, S.L.; Panuganti, S.; Gangarapu, K.; Devarakonda, K.P.; Bakshi, V.; Guggilla, S.R. In Silico and In Vivo Studies on Quercetin as Potential Anti-Parkinson Agent. Adv Exp Med Biol2020, 1195, 1–11. [Google Scholar]
Verma, J.; Khedkar, V.M.; Coutinho, E.C. 3D-QSAR in drug design-a review. Curr. Top. Med. Chem.2010, 10, 95–115. [Google Scholar] [CrossRef]
El Fadili, M.; Er-rajy, M.; Imtara, H.; Kara, M.; Zarougui, S.; Altwaijry, N.; Al Kamaly, O.; Al Sfouk, A.; Elhallaoui, M. 3D-QSAR, ADME-Tox In Silico Prediction and Molecular Docking Studies for Modeling the Analgesic Activity against Neuropathic Pain of Novel NR2B-Selective NMDA Receptor Antagonists. Processes2022, 10, 1462. [Google Scholar] [CrossRef]
Marchettini, P.; Lacerenza, M.; Mauri, E.; Marangoni, C. Painful peripheral neuropathies. Curr. Neuropharmacol.2006, 4, 175–181. [Google Scholar] [CrossRef]
Furgała-Wojas, A.; Kowalska, M.; Nowaczyk, A.; Fijałkowski, Ł.; Sałat, K. Comparison of Bromhexine and its Active Metabolite—Ambroxol as Potential Analgesics Reducing Oxaliplatin-induced Neuropathic Pain—Pharmacodynamic and Molecular Docking Studies. Curr. Drug Metab.2020, 21, 548–561. [Google Scholar] [CrossRef] [PubMed]
Mann, J.D. Production of solasodine for the pharmaceutical industry. Adv. Agron.1979, 30, 207–245. [Google Scholar]
Verma, S.; Kuhad, A.; Bhandari, R.; Prasad, S.K.; Shakya, A.; Prasad, R.S.; Sinha, S.K. Effect of ethanolic extract of Solanum virginianum Linn. on neuropathic pain using chronic constriction injury rat model and molecular docking studies. Naunyn-Schmiedeberg’s Arch. Pharmacol.2020, 393, 1715–1728. [Google Scholar] [CrossRef] [PubMed]
Stephenson, N.; Shane, E.; Chase, J.; Rowland, J.; Ries, D.; Justice, N.; Zhang, J.; Chan, L.; Cao, R. Survey of Machine Learning Techniques in Drug Discovery. Curr. Drug Metab.2019, 20, 185–193. [Google Scholar] [CrossRef] [PubMed]
Sun, M.; Han, T.X.; Ming-Chang, L.; Khodayari-Rostamabad, A. Multiple Instance Learning Convolutional Neural Networks for object recognition. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 3270–3275. [Google Scholar]
Tăuţan, A.-M.; Ionescu, B.; Santarnecchi, E. Artificial intelligence in neurodegenerative diseases: A review of available tools with a focus on machine learning techniques. Artif. Intell. Med.2021, 117, 102081. [Google Scholar] [CrossRef]
Spencer, M.; Eickholt, J.; Cheng, J. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction. IEEE/ACM Trans. Comput. Biol. Bioinform.2015, 12, 103–112. [Google Scholar] [CrossRef]
Li, H.; Hou, J.; Adhikari, B.; Lyu, Q.; Cheng, J. Deep learning methods for protein torsion angle prediction. BMC Bioinform.2017, 18, 417. [Google Scholar] [CrossRef]
Xue, L.C.; Dobbs, D.; Bonvin, A.M.J.J.; Honavar, V. Computational prediction of protein interfaces: A review of data driven methods. FEBS Lett.2015, 589, 3516–3526. [Google Scholar] [CrossRef]
Taha, K. Semi-supervised and un-supervised clustering: A review and experimental evaluation. Inf. Syst.2023, 114, 102178. [Google Scholar] [CrossRef]
Wang, C.; Kurgan, L. Survey of Similarity-Based Prediction of Drug-Protein Interactions. Curr. Med. Chem.2020, 27, 5856–5886. [Google Scholar] [CrossRef] [PubMed]
Zhou, H.; Gao, M.; Skolnick, J. Comprehensive prediction of drug-protein interactions and side effects for the human proteome. Sci. Rep.2015, 5, 11090. [Google Scholar] [CrossRef] [PubMed]
Gunther, E.C.; Stone, D.J.; Gerwien, R.W.; Bento, P.; Heyes, M.P. Prediction of clinical drug efficacy by classification of drug-induced genomic expression profiles in vitro. Proc. Natl. Acad. Sci. USA2003, 100, 9608–9613. [Google Scholar] [CrossRef] [PubMed]
Myszczynska, M.A.; Ojamies, P.N.; Lacoste, A.M.B.; Neil, D.; Saffari, A.; Mead, R.; Hautbergue, G.M.; Holbrook, J.D.; Ferraiuolo, L. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat. Rev. Neurol.2020, 16, 440–456. [Google Scholar] [CrossRef]
Sistare, F.D.; Dieterle, F.; Troth, S.; Holder, D.J.; Gerhold, D.; Andrews-Cleavenger, D.; Baer, W.; Betton, G.; Bounous, D.; Carl, K.; et al. Towards consensus practices to qualify safety biomarkers for use in early drug development. Nat. Biotechnol.2010, 28, 446–454. [Google Scholar] [CrossRef]
Rolan, P.; Danhof, M.; Stanski, D.; Peck, C. Current issues relating to drug safety especially with regard to the use of biomarkers: A meeting report and progress update. Eur. J. Pharm. Sci.2007, 30, 107–112. [Google Scholar] [CrossRef]
Du, T.; Liao, L.; Wu, C.H.; Sun, B. Prediction of residue-residue contact matrix for protein-protein interaction with Fisher score features and deep learning. Methods2016, 110, 97–105. [Google Scholar] [CrossRef]
Scott, D.E.; Bayly, A.R.; Abell, C.; Skidmore, J. Small molecules, big targets: Drug discovery faces the protein–protein interaction challenge. Nat. Rev. Drug Discov.2016, 15, 533–550. [Google Scholar] [CrossRef]
Santos, R.; Ursu, O.; Gaulton, A.; Bento, A.P.; Donadi, R.S.; Bologa, C.G.; Karlsson, A.; Al-Lazikani, B.; Hersey, A.; Oprea, T.I.; et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov.2016, 16, 19–34. [Google Scholar] [CrossRef]
Gootjes-Dreesbach, L.; Sood, M.; Sahay, A.; Hofmann-Apitius, M.; Fröhlich, H. Variational Autoencoder Modular Bayesian Networks for Simulation of Heterogeneous Clinical Study Data. Front. Big Data2020, 3, 16. [Google Scholar] [CrossRef]
Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord.2008, 23, 2129–2170. [Google Scholar] [CrossRef] [PubMed]
Wolpert, D.H. The Lack of A Priori Distinctions Between Learning Algorithms. Neural Comput.1996, 8, 1341–1390. [Google Scholar] [CrossRef]
Dara, S.; Dhamercherla, S.; Jadav, S.S.; Babu, C.H.M.; Ahsan, M.J. Machine Learning in Drug Discovery: A Review. Artif. Intell. Rev.2021, 55, 1947–1999. [Google Scholar] [CrossRef] [PubMed]
Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing2020, 408, 189–215. [Google Scholar] [CrossRef]
Matsumoto, A.; Aoki, S.; Ohwada, H. Comparison of Random Forest and SVM for Raw Data in Drug Discovery: Prediction of Radiation Protection and Toxicity Case Study. Int. J. Mach. Learn. Comput.2016, 6, 145–148. [Google Scholar] [CrossRef]
de Brevern, A.G.; Wang, Q.; Feng, Y.; Huang, J.; Wang, T.; Cheng, G. A novel framework for the identification of drug target proteins: Combining stacked auto-encoders with a biased support vector machine. PLoS ONE2017, 12, e0176486. [Google Scholar]
Huang, S.; Cai, N.; Pacheco, P.P.; Narrandes, S.; Wang, Y.; Xu, W. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genom. Proteom.2018, 15, 41–51. [Google Scholar]
Maltarollo, V.G.; Kronenberger, T.; Espinoza, G.Z.; Oliveira, P.R.; Honorio, K.M. Advances with support vector machines for novel drug discovery. Expert Opin. Drug Discov.2018, 14, 23–33. [Google Scholar] [CrossRef]
Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
Cano, G.; Garcia-Rodriguez, J.; Garcia-Garcia, A.; Perez-Sanchez, H.; Benediktsson, J.A.; Thapa, A.; Barr, A. Automatic selection of molecular descriptors using random forest: Application to drug discovery. Expert Syst. Appl.2017, 72, 151–159. [Google Scholar] [CrossRef]
Rahman, R.; Matlock, K.; Ghosh, S.; Pal, R. Heterogeneity Aware Random Forest for Drug Sensitivity Prediction. Sci. Rep.2017, 7, 11347. [Google Scholar] [CrossRef]
Samigulina, G.; Zarina, S. Immune Network Technology on the Basis of Random Forest Algorithm for Computer-Aided Drug Design. In Bioinformatics and Biomedical Engineering. IWBBIO; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2017; Volume 10208. [Google Scholar] [CrossRef]
Lenhof, K.; Eckhart, L.; Gerstner, N.; Kehl, T.; Lenhof, H.-P. Simultaneous regression and classification for drug sensitivity prediction using an advanced random forest method. Sci. Rep.2022, 12, 13458. [Google Scholar] [CrossRef] [PubMed]
Honório, K.M.; De Lima, E.F.; Quiles, M.G.; Romero, R.A.F.; Molfetta, F.A.; Da Silva, A.B.F. Artificial Neural Networks and the Study of the Psychoactivity of Cannabinoid Compounds. Chem. Biol. Drug Des.2010, 75, 632–640. [Google Scholar] [CrossRef] [PubMed]
de Molfetta, F.A.; Angelotti, W.F.D.; Romero, R.A.F.; Montanari, C.A.; da Silva, A.B.F. A neural networks study of quinone compounds with trypanocidal activity. J. Mol. Model.2008, 14, 975–985. [Google Scholar] [CrossRef]
Scotti, L.; Ishiki, H.; Mendonça Júnior, F.; da Silva, M.; Scotti, M. Artificial Neural Network Methods Applied to Drug Discovery for Neglected Diseases. Comb. Chem. High Throughput Screen.2015, 18, 819–829. [Google Scholar] [CrossRef]
Stokes, A.; Hum, W.; Zaslavsky, J. A minimal-input multilayer perceptron for predicting drug-drug interactions without knowledge of drug structure. STEM Fellowsh. J.2021, 6, 19–23. [Google Scholar] [CrossRef]
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature2015, 521, 436–444. [Google Scholar] [CrossRef]
Carkli Yavuz, B.; Yurtay, N.; Ozkan, O. Prediction of Protein Secondary Structure with Clonal Selection Algorithm and Multilayer Perceptron. IEEE Access2018, 6, 45256–45261. [Google Scholar] [CrossRef]
Gómez-Bombarelli, R.; Wei, J.N.; Duvenaud, D.; Hernández-Lobato, J.M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T.D.; Adams, R.P.; Aspuru-Guzik, A. Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Cent. Sci.2018, 4, 268–276. [Google Scholar] [CrossRef]
Xiong, Z.; Cheng, Z.; Lin, X.; Xu, C.; Liu, X.; Wang, D.; Luo, X.; Zhang, Y.; Jiang, H.; Qiao, N.; et al. Facing small and biased data dilemma in drug discovery with enhanced federated learning approaches. Sci. China Life Sci.2021, 65, 529–539. [Google Scholar] [CrossRef]
Martinelli, D.D. Generative machine learning for de novo drug discovery: A systematic review. Comput. Biol. Med.2022, 145, 105403. [Google Scholar] [CrossRef]
Kashyap, K.; Siddiqi, M.I. Recent trends in artificial intelligence-driven identification and development of anti-neurodegenerative therapeutic agents. Mol. Divers.2021, 25, 1517–1539. [Google Scholar] [CrossRef] [PubMed]
Moret, M.; Pachon Angona, I.; Cotos, L.; Yan, S.; Atz, K.; Brunner, C.; Baumgartner, M.; Grisoni, F.; Schneider, G. Leveraging molecular structure and bioactivity with chemical language models for de novo drug design. Nat. Commun.2023, 14, 114. [Google Scholar] [CrossRef] [PubMed]
Hansch, C.; Fujita, T. p-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure. J. Am. Chem. Soc.2002, 86, 1616–1626. [Google Scholar] [CrossRef]
Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y.C.; Todeschini, R.; et al. QSAR Modeling: Where Have You Been? Where Are You Going To? J. Med. Chem.2014, 57, 4977–5010. [Google Scholar] [CrossRef]
Buckner, F.S.; Ekins, S.; Lage de Siqueira-Neto, J.; McCall, L.-I.; Sarker, M.; Yadav, M.; Ponder, E.L.; Kallel, E.A.; Kellar, D.; Chen, S.; et al. Machine Learning Models and Pathway Genome Data Base for Trypanosoma cruzi Drug Discovery. PLoS Neglected Trop. Dis.2015, 9, e0003878. [Google Scholar]
Neves, B.J.; Braga, R.C.; Melo-Filho, C.C.; Moreira-Filho, J.T.; Muratov, E.N.; Andrade, C.H. QSAR-Based Virtual Screening: Advances and Applications in Drug Discovery. Front. Pharmacol.2018, 9, 1275. [Google Scholar] [CrossRef]
Farghali, H.; Kutinová Canová, N.; Arora, M. The potential applications of artificial intelligence in drug discovery and development. Physiol. Res.2021, 70 (Suppl. 4), S715–S722. [Google Scholar] [CrossRef]
Subramanian, G.; Ramsundar, B.; Pande, V.; Denny, R.A. Computational Modeling of β-Secretase 1 (BACE-1) Inhibitors Using Ligand Based Approaches. J. Chem. Inf. Model.2016, 56, 1936–1949. [Google Scholar] [CrossRef] [PubMed]
Vatansever, S.; Schlessinger, A.; Wacker, D.; Kaniskan, H.Ü.; Jin, J.; Zhou, M.M.; Zhang, B. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-arts and future directions. Med. Res Rev.2021, 41, 1427–1473. [Google Scholar] [CrossRef] [PubMed]
Sharma, A.; Lysenko, A.; Jia, S.; Boroevich, K.A.; Tsunoda, T. Advances in AI and machine learning for predictive medicine. J Hum Genet.2024, 69, 487–497. [Google Scholar] [CrossRef] [PubMed]
Panizza, E.; Cerione, R.A. An interpretable deep learning framework identifies proteomic drivers of Alzheimer’s disease. Front. Cell Dev. Biol.2024, 12, 1379984. [Google Scholar] [CrossRef]
Blanco, K.; Salcidua, S.; Orellana, P.; Sauma-Pérez, T.; León, T.; Steinmetz, L.C.L.; Ibañez, A.; Duran-Aniotz, C.; de la Cruz, R. Systematic review: Fluid biomarkers and machine learning methods to improve the diagnosis from mild cognitive impairment to Alzheimer’s disease. Alzheimers Res. Ther.2023, 15, 176. [Google Scholar] [CrossRef]
Wang, X.; Ye, T.; Jiang, D.; Zhou, W.; Zhang, J. Alzheimer’s Disease Neuroimaging Initiative. Characterizing the clinical heterogeneity of early symptomatic Alzheimer’s disease: A data-driven machine learning approach. Front. Aging Neurosci.2024, 16, 1410544. [Google Scholar] [CrossRef]
Park, I.; Lee, S.K.; Choi, H.C.; Ahn, M.E.; Ryu, O.H.; Jang, D.; Lee, U.; Kim, Y.J. Machine Learning Model for Mild Cognitive Impairment Stage Based on Gait and MRI Images. Brain Sci.2024, 14, 480. [Google Scholar] [CrossRef]
Baggett, D.W.; Nath, A. The Rational Discovery of a Tau Aggregation Inhibitor. Biochemistry2018, 57, 6099–6107. [Google Scholar] [CrossRef]
Hernandez, J.J.; Pryszlak, M.; Smith, L.; Yanchus, C.; Kurji, N.; Shahani, V.M.; Molinski, S.V. Giving Drugs a Second Chance: Overcoming Regulatory and Financial Hurdles in Repurposing Approved Drugs as Cancer Therapeutics. Front Oncol.2017, 7, 273. [Google Scholar] [CrossRef]
Rodriguez, S.; Hug, C.; Todorov, P.; Moret, N.; Boswell, S.A.; Evans, K.; Zhou, G.; Johnson, N.T.; Hyman, B.T.; Sorger, P.K.; et al. Machine learning identifies candidates for drug repurposing in Alzheimer’s disease. Nat. Commun.2021, 12, 1033. [Google Scholar] [CrossRef]
Angelopoulou, E.; Pyrgelis, E.S.; Piperi, C. Emerging potential of the phosphodiesterase (PDE) inhibitor ibudilast for neurodegenerative diseases: An update on preclinical and clinical evidence. Molecules2022, 27, 8448. [Google Scholar] [CrossRef] [PubMed]
Rolan, P.; Hutchinson, M.; Johnson, K. Ibudilast: A review of its pharmacology, efficacy, and safety in respiratory and neurological disease. Expert Opin. Pharmacother.2009, 10, 2897–2904. [Google Scholar] [CrossRef] [PubMed]
Abdul Manap, A.S.; Almadodi, R.; Sultana, S.; Sebastian, M.G.; Kavani, K.S.; Lyenouq, V.E.; Shankar, A. Alzheimer’s disease: A review on the current trends of the effective diagnosis and therapeutics. Front. Aging Neurosci.2024, 16, 1429211. [Google Scholar] [CrossRef]
Kim, A.Y.; Al Jerdi, S.; MacDonald, R.; Triggle, C.R. Alzheimer’s disease and its treatment—Yesterday, today, and tomorrow. Front. Pharmacol.2024, 15, 1399121. [Google Scholar] [CrossRef]
Zhang, J.; Zhang, Y.; Wang, J.; Xia, Y.; Zhang, J.; Chen, L. Recent advances in Alzheimer’s disease: Mechanisms, clinical trials, and new drug development strategies. Signal Transduct. Target Ther.2024, 9, 211. [Google Scholar] [CrossRef]
Sequeira, L.; Benfeito, S.; Fernandes, C.; Lima, I.; Peixoto, J.; Alves, C.; Machado, C.S.; Gaspar, A.; Borges, F.; Chavarria, D. Drug development for Alzheimer’s and Parkinson’s disease: Where do we go now? Pharmaceutics2024, 16, 708. [Google Scholar] [CrossRef]
Kang, C. Donanemab: First approval. Drugs2024. Epub ahead of print. [Google Scholar] [CrossRef]
Martins, A.C.; Oshiro, M.Y.; Albericio, F.; de la Torre, B.G. Food and Drug Administration (FDA) approvals of biological drugs in 2023. Biomedicines2024, 12, 1992. [Google Scholar] [CrossRef]
Xiong, B.; Song, Z.; Wang, L.; Zhang, A.; Zhou, Y.; Zheng, N.; Wei, Y.; Chen, Y.; Sun, H. Can targeted protein degradation technology provide a potential breakthrough in the development of anti-AD drugs? ACS Chem. Neurosci.2024, 15, 3434–3436. [Google Scholar] [CrossRef]
Yajing, M.; Sufang, L.; Qingfeng, Z.; Zhonghua, L.; Zhijian, Z.; Bin, Y. Approved drugs and natural products at clinical stages for treating Alzheimer’s disease. Chin. J. Nat. Med.2024, 22, 699–710. [Google Scholar]
Jin, M.; Noble, J.M. What’s in it for me? Contextualizing the potential clinical impacts of lecanemab, donanemab, and other anti-β-amyloid monoclonal antibodies in early Alzheimer’s disease. eNeuro2024, 11, ENEURO.0088-24.2024. [Google Scholar] [CrossRef] [PubMed]
Musiek, E.S.; McDade, E.; Holtzman, D.M. Lecanemab ushers in a new era of anti-amyloid therapy for Alzheimer’s disease. Ann. Neurol.2023, 93, 877–880. [Google Scholar] [CrossRef] [PubMed]
Cohen, S.; van Dyck, C.H.; Gee, M.; Doherty, T.; Kanekiyo, M.; Dhadda, S.; Li, D.; Hersch, S.; Irizarry, M.; Kramer, L.D. Lecanemab Clarity AD: Quality-of-life results from a randomized, double-blind phase 3 trial in early Alzheimer’s disease. J. Prev. Alzheimers Dis.2023, 10, 771–777. [Google Scholar] [CrossRef]
Honig, L.S.; Barakos, J.; Dhadda, S.; Kanekiyo, M.; Reyderman, L.; Irizarry, M.; Kramer, L.D.; Swanson, C.J.; Sabbagh, M. ARIA in patients treated with lecanemab (BAN2401) in a phase 2 study in early Alzheimer’s disease. Alzheimers Dement.2023, 9, e12377. [Google Scholar] [CrossRef]
Shcherbinin, S.; Evans, C.D.; Lu, M.; Andersen, S.W.; Pontecorvo, M.J.; Willis, B.A.; Gueorguieva, I.; Hauck, P.M.; Brooks, D.A.; Mintun, M.A.; et al. Association of amyloid reduction after donanemab treatment with tau pathology and clinical outcomes: The TRAILBLAZER-ALZ randomized clinical trial. JAMA Neurol.2022, 79, 1015–1024. [Google Scholar] [CrossRef]
Sims, J.R.; Zimmer, J.A.; Evans, C.D.; Lu, M.; Ardayfio, P.; Sparks, J.; Wessels, A.M.; Shcherbinin, S.; Wang, H.; Monkul Nery, E.S.; et al. Donanemab in early symptomatic Alzheimer disease: The TRAILBLAZER-ALZ 2 randomized clinical trial. JAMA2023, 330, 512–527. [Google Scholar] [CrossRef]
Mintun, M.A.; Lo, A.C.; Duggan Evans, C.; Wessels, A.M.; Ardayfio, P.A.; Andersen, S.W.; Shcherbinin, S.; Sparks, J.; Sims, J.R.; Brys, M.; et al. Donanemab in early Alzheimer’s disease. N. Engl. J. Med.2021, 384, 1691–1704. [Google Scholar] [CrossRef]
A Survey on Computational Methods in Drug Discovery for Neurodegenerative Diseases
Currently, the age structure of the world population is changing due to declining birth rates and increasing life expectancy. As a result, physicians worldwide have to treat an increasing number of age-related diseases, of which neurological disorders represent a significant part. In this context, there is an urgent need to discover new therapeutic approaches to counteract the effects of neurodegeneration on human health, and computational science can be of pivotal importance for more effective neurodrug discovery. The knowledge of the molecular structure of the receptors and other biomolecules involved in neurological pathogenesis facilitates the design of new molecules as potential drugs to be used in the fight against diseases of high social relevance such as dementia, Alzheimer’s disease (AD) and Parkinson’s disease (PD), to cite only a few. However, the absence of comprehensive guidelines regarding the strengths and weaknesses of alternative approaches creates a fragmented and disconnected field, resulting in missed opportunities to enhance performance and achieve successful applications. This review aims to summarize some of the most innovative strategies based on computational methods used for neurodrug development. In particular, recent applications and the state-of-the-art of molecular docking and artificial intelligence for ligand- and target-based approaches in novel drug design were reviewed, highlighting the crucial role of in silico methods in the context of neurodrug discovery for neurodegenerative diseases.
A Survey on Computational Methods in Drug Discovery for Neurodegenerative Diseases
Vitiello M, Finamore E, Falanga A, Raieta K, Cantisani M, Galdiero F, Pedone C, Galdiero M, Galdiero S * Fusion in Coq(596 views) Lecture Notes In Computer Science (ISSN: 0302-9743, 0302-974335404636319783540463634, 0302-974335402975459783540297543), 2001; 2178LNCS: 583-596. Impact Factor:0.415 ViewExport to BibTeXExport to EndNote
97 Records (92 excluding Abstracts). Total impact factor: 367.385 (349.178 excluding Abstracts). Total 5 year impact factor: 334.17 (316.272 excluding Abstracts).