Oceanic Breakthroughs: Marine-Derived Innovations in Vaccination, Therapy, and Immune Health(23 views) Gamberi C, Leverette CL, Davis AC, Ismail M, Piccialli I, Borbone N, Oliviero G, Vicidomini C, Palumbo R, Roviello GN
Matsunaga, T.; Takeyama, H.; Miyashita, H.; Yokouchi, H. Marine microalgae. In Marine Biotechnology I; Springer: Berlin/Heidelberg, Germany, 2005; pp. 165–188. [Google Scholar]
Zanella, L.; Vianello, F. Microalgae of the genus Nannochloropsis: Chemical composition and functional implications for human nutrition. J. Funct. Foods2020, 68, 103919. [Google Scholar] [CrossRef]
Vicidomini, C.; Palumbo, R.; Moccia, M.; Roviello, G.N. Oxidative Processes and Xenobiotic Metabolism in Plants: Mechanisms of Defense and Potential Therapeutic Implications. J. Xenobiotics2024, 14, 1541–1569. [Google Scholar] [CrossRef] [PubMed]
Chen, Y.; Tang, X.; Kapoore, R.V.; Xu, C.; Vaidyanathan, S. Influence of nutrient status on the accumulation of biomass and lipid in Nannochloropsis salina and Dunaliella salina. Energy Convers. Manag.2015, 106, 61–72. [Google Scholar] [CrossRef]
Goswami, R.K.; Agrawal, K.; Verma, P. Microalgae Dunaliella as biofuel feedstock and β-carotene production: An influential step towards environmental sustainability. Energy Convers. Manag. X2022, 13, 100154. [Google Scholar] [CrossRef]
Ramos-Vega, A.; Angulo, C.; Bañuelos-Hernández, B.; Monreal-Escalante, E. Microalgae-made vaccines against infectious diseases. Algal Res.2021, 58, 102408. [Google Scholar] [CrossRef]
Rosales-Mendoza, S.; García-Silva, I.; González-Ortega, O.; Sandoval-Vargas, J.M.; Malla, A.; Vimolmangkang, S. The Potential of Algal Biotechnology to Produce Antiviral Compounds and Biopharmaceuticals. Molecules2020, 25, 4049. [Google Scholar] [CrossRef]
Garduño-González, K.A.; Peña-Benavides, S.A.; Araújo, R.G.; Castillo-Zacarías, C.; Melchor-Martínez, E.M.; Oyervides-Muñoz, M.A.; Sosa-Hernández, J.E.; Purton, S.; Iqbal, H.M.N.; Parra-Saldívar, R. Current challenges for modern vaccines and perspectives for novel treatment alternatives. J. Drug Deliv. Sci. Technol.2022, 70, 103222. [Google Scholar] [CrossRef]
Suraiya, S.; Ahmmed, M.K.; Haq, M. Immunity boosting roles of biofunctional compounds available in aquafoods: A review. Heliyon2022, 8, e09547. [Google Scholar] [CrossRef]
van der Poll, T.; Shankar-Hari, M.; Wiersinga, W.J. The immunology of sepsis. Immunity2021, 54, 2450–2464. [Google Scholar] [CrossRef] [PubMed]
Khan, M.M.; Ernst, O.; Sun, J.; Fraser, I.D.C.; Ernst, R.K.; Goodlett, D.R.; Nita-Lazar, A. Mass Spectrometry-based Structural Analysis and Systems Immunoproteomics Strategies for Deciphering the Host Response to Endotoxin. J. Mol. Biol.2018, 430, 2641–2660. [Google Scholar] [CrossRef] [PubMed]
Gauthier, A.E.; Chandler, C.E.; Poli, V.; Gardner, F.M.; Tekiau, A.; Smith, R.; Bonham, K.S.; Cordes, E.E.; Shank, T.M.; Zanoni, I.; et al. Deep-sea microbes as tools to refine the rules of innate immune pattern recognition. Sci. Immunol.2021, 6, eabe0531. [Google Scholar] [CrossRef] [PubMed]
Costanzo, V.; Roviello, G.N. The Potential Role of Vaccines in Preventing Antimicrobial Resistance (AMR): An Update and Future Perspectives. Vaccines2023, 11, 333. [Google Scholar] [CrossRef] [PubMed]
Costanzo, M.; De Giglio, M.A.; Roviello, G.N. Anti-coronavirus vaccines: Past investigations on sars-cov-1 and mers-cov, the approved vaccines from biontech/pfizer, moderna, oxford/astrazeneca and others under development against sarscov-2 infection. Curr. Med. Chem.2022, 29, 4–18. [Google Scholar] [CrossRef]
Vicidomini, C.; Borbone, N.; Roviello, V.; Roviello, G.N.; Oliviero, G. Summary of the Current Status of DNA Vaccination for Alzheimer Disease. Vaccines2023, 11, 1706. [Google Scholar] [CrossRef]
Oyston, P.; Robinson, K. The current challenges for vaccine development. J. Med. Microbiol.2012, 61, 889–894. [Google Scholar] [CrossRef]
Walker, B.D.; Burton, D.R. Toward an AIDS vaccine. Science2008, 320, 760–764. [Google Scholar] [CrossRef]
Kallerup, R.S.; Foged, C. Classification of vaccines. In Subunit Vaccine Delivery; Springer: Berlin/Heidelberg, Germany, 2014; pp. 15–29. [Google Scholar]
Wilde, B.B.; Park, D.J. Immunizations. Prim. Care Clin. Off. Pract.2019, 46, 53–68. [Google Scholar] [CrossRef]
Ni, H.; Capodici, J.; Cannon, G.; Communi, D.; Boeynaems, J.-M.; Karikó, K.; Weissman, D. Extracellular mRNA Induces Dendritic Cell Activation by Stimulating Tumor Necrosis Factor-α Secretion and Signaling through a Nucleotide Receptor. J. Biol. Chem.2002, 277, 12689–12696. [Google Scholar] [CrossRef]
Sahin, U.; Karikó, K.; Türeci, Ö. mRNA-based therapeutics—Developing a new class of drugs. Nat. Rev. Drug Discov.2014, 13, 759–780. [Google Scholar] [CrossRef] [PubMed]
Geng, D.; Wang, Y.; Wang, P.; Li, W.; Sun, Y. Stable expression of hepatitis B surface antigen gene in Dunaliella salina (Chlorophyta). J. Appl. Phycol.2003, 15, 451–456. [Google Scholar] [CrossRef]
Dreesen, I.A.J.; Hamri, G.C.-E.; Fussenegger, M. Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureus infection. J. Biotechnol.2010, 145, 273–280. [Google Scholar] [CrossRef] [PubMed]
Ramos-Vega, A.; Monreal-Escalante, E.; Rosales-Mendoza, S.; Bañuelos-Hernández, B.; Dumonteil, E.; Angulo, C. Trypanosoma cruzi Tc24 antigen expressed and orally delivered by Schizochytrium sp. Microalga is immunogenic in mice. Mol. Biotechnol.2024, 66, 1376–1388. [Google Scholar] [CrossRef]
Trujillo, E.; Monreal-Escalante, E.; Angulo, C. Microalgae-made human vaccines and therapeutics: A decade of advances. Biotechnol. J.2024, 19, 2400091. [Google Scholar] [CrossRef]
Chen, W.N.; Demurtas, O.C.; Massa, S.; Ferrante, P.; Venuti, A.; Franconi, R.; Giuliano, G. A Chlamydomonas-Derived Human Papillomavirus 16 E7 Vaccine Induces Specific Tumor Protection. PLoS ONE2013, 8, e61473. [Google Scholar] [CrossRef]
Castro-Cosio, P.; Monreal-Escalante, E.; Romero-Geraldo, R.; Angulo, C. Natural and recombinant bioactive compounds from Schizochytrium sp.: Recent advances and future prospects. Algal Res.2023, 75, 103273. [Google Scholar] [CrossRef]
Márquez-Escobar, V.A.; Bañuelos-Hernández, B.; Rosales-Mendoza, S. Expression of a Zika virus antigen in microalgae: Towards mucosal vaccine development. J. Biotechnol.2018, 282, 86–91. [Google Scholar] [CrossRef]
Trujillo, E.; Villegas-Zagal, R.; Ramos-Vega, A.; Bañuelos-Hernández, B.; Angulo, C.; Monreal-Escalante, E. Genetic-engineered Schizochytrium sp. expressing a multiepitopic protein based on Vibrio parahaemolyticus toxins triggers immune responses in mice. Algal Res.2024, 79, 103440. [Google Scholar] [CrossRef]
Zhang, Z.; He, P.; Zhou, Y.; Xie, X.; Feng, S.; Sun, C. Anti-HBV effect of interferon-thymosin α1 recombinant proteins in transgenic Dunaliella salina in vitro and in vivo. Exp. Ther. Med.2018, 16, 517–522. [Google Scholar] [CrossRef] [PubMed]
Cesta, M.F. Normal Structure, Function, and Histology of Mucosa-Associated Lymphoid Tissue. Toxicol. Pathol.2006, 34, 599–608. [Google Scholar] [CrossRef] [PubMed]
Martínez-Francés, E.; Escudero-Oñate, C. Cyanobacteria and Microalgae in the Production of Valuable Bioactive Compounds. In Microalgal Biotechnology; IntechOpen: London, UK, 2018. [Google Scholar]
Einhaus, A.; Baier, T.; Kruse, O. Molecular design of microalgae as sustainable cell factories. Trends Biotechnol.2024, 42, 728–738. [Google Scholar] [CrossRef] [PubMed]
Bhola, V.; Swalaha, F.; Ranjith Kumar, R.; Singh, M.; Bux, F. Overview of the potential of microalgae for CO2 sequestration. Int. J. Environ. Sci. Technol.2014, 11, 2103–2118. [Google Scholar] [CrossRef]
Li, S.; Li, X.; Ho, S.-H. How to enhance carbon capture by evolution of microalgal photosynthesis? Sep. Purif. Technol.2022, 291, 120951. [Google Scholar] [CrossRef]
Castellanos-Huerta, I.; Gómez-Verduzco, G.; Tellez-Isaias, G.; Ayora-Talavera, G.; Bañuelos-Hernández, B.; Petrone-García, V.M.; Fernández-Siurob, I.; Garcia-Casillas, L.A.; Velázquez-Juárez, G. Dunaliella salina as a Potential Biofactory for Antigens and Vehicle for Mucosal Application. Processes2022, 10, 1776. [Google Scholar] [CrossRef]
Castellanos-Huerta, I.; Gómez-Verduzco, G.; Tellez-Isaias, G.; Ayora-Talavera, G.; Bañuelos-Hernández, B.; Petrone-García, V.M.; Fernández-Siurob, I.; Velázquez-Juárez, G. Immune Evaluation of Avian Influenza Virus HAr Protein Expressed in Dunaliella salina in the Mucosa of Chicken. Vaccines2022, 10, 1418. [Google Scholar] [CrossRef]
Chomel, B. Zoonoses. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
Paul-Pierre, P. Emerging diseases, zoonoses and vaccines to control them. Vaccine2009, 27, 6435–6438. [Google Scholar] [CrossRef]
Feng, S.; Feng, W.; Zhao, L.; Gu, H.; Li, Q.; Shi, K.; Guo, S.; Zhang, N. Preparation of transgenic Dunaliella salina for immunization against white spot syndrome virus in crayfish. Arch. Virol.2013, 159, 519–525. [Google Scholar] [CrossRef] [PubMed]
Chang, P.; Yang, J.; Karunarathna, T.K.; Qureshi, M.; Sadeyen, J.-R.; Iqbal, M. Characterization of the haemagglutinin properties of the H5N1 avian influenza virus that caused human infections in Cambodia. Emerg. Microbes Infect.2023, 12, 2244091. [Google Scholar] [CrossRef] [PubMed]
Uyeki, T.M.; Milton, S.; Abdul Hamid, C.; Reinoso Webb, C.; Presley, S.M.; Shetty, V.; Rollo, S.N.; Martinez, D.L.; Rai, S.; Gonzales, E.R. Highly pathogenic avian influenza A (H5N1) virus infection in a dairy farm worker. N. Engl. J. Med.2024, 390, 2028–2029. [Google Scholar] [CrossRef] [PubMed]
Krammer, F.; Schultz-Cherry, S. We need to keep an eye on avian influenza. Nat. Rev. Immunol.2023, 23, 267–268. [Google Scholar] [CrossRef] [PubMed]
Castellanos-Huerta, I.; Gómez-Verduzco, G.; Tellez-Isaias, G.; Ayora-Talavera, G.; Bañuelos-Hernández, B.; Petrone-García, V.M.; Velázquez-Juárez, G.; Fernández-Siurob, I. Transformation of Dunaliella salina by Agrobacterium tumefaciens for the Expression of the Hemagglutinin of Avian Influenza Virus H5. Microorganisms2022, 10, 361. [Google Scholar] [CrossRef]
Abdelghany, M.F.; El-Sawy, H.B.; Abd El-hameed, S.A.A.; Khames, M.K.; Abdel-Latif, H.M.R.; Naiel, M.A.E. Effects of dietary Nannochloropsis oculata on growth performance, serum biochemical parameters, immune responses, and resistance against Aeromonas veronii challenge in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol.2020, 107, 277–288. [Google Scholar] [CrossRef]
Abidin, A.A.Z.; Othman, N.A.; Yusoff, F.M.; Yusof, Z.N.B. Determination of transgene stability in Nannochloropsis sp. transformed with immunogenic peptide for oral vaccination against vibriosis. Aquac. Int.2021, 29, 477–486. [Google Scholar] [CrossRef]
Srivastava, S.; Rahman, M.A.; Sundaram, S. Immunomodulatory Effects of Edible Microalgae. In Immune-Boosting Nutraceuticals for Better Human Health; Apple Academic Press: Palm Bay, FL, USA, 2024; pp. 259–288. [Google Scholar]
Barkia, I.; Saari, N.; Manning, S.R. Microalgae for high-value products towards human health and nutrition. Mar. Drugs2019, 17, 304. [Google Scholar] [CrossRef]
Riccio, G.; Lauritano, C. Microalgae with immunomodulatory activities. Mar. Drugs2019, 18, 2. [Google Scholar] [CrossRef]
Trujillo, E.; Monreal-Escalante, E.; Ramos-Vega, A.; Angulo, C. Macroalgae: Marine players in vaccinology. Algal Res.2024, 78, 103392. [Google Scholar] [CrossRef]
Kang, H.K.; Lee, H.H.; Seo, C.H.; Park, Y. Antimicrobial and immunomodulatory properties and applications of marine-derived proteins and peptides. Mar. Drugs2019, 17, 350. [Google Scholar] [CrossRef]
Saeed, A.F.; Su, J.; Ouyang, S. Marine-derived drugs: Recent advances in cancer therapy and immune signaling. Biomed. Pharmacother.2021, 134, 111091. [Google Scholar] [CrossRef] [PubMed]
Mendes, A.; Azevedo-Silva, J.; Fernandes, J.C. From sharks to yeasts: Squalene in the development of vaccine adjuvants. Pharmaceuticals2022, 15, 265. [Google Scholar] [CrossRef] [PubMed]
Lauxmann, M.A.; Santucci, N.E.; Autrán-Gómez, A.M. The SARS-CoV-2 Coronavirus and the COVID-19 Outbreak. Int. Braz. J. Urol.2020, 46, 6–18. [Google Scholar] [CrossRef]
Xie, Y.; Choi, T.; Al-Aly, Z. Postacute Sequelae of SARS-CoV-2 Infection in the Pre-Delta, Delta, and Omicron Eras. N. Engl. J. Med.2024, 391, 515–525. [Google Scholar] [CrossRef]
Borbone, N.; Piccialli, I.; Falanga, A.P.; Piccialli, V.; Roviello, G.N.; Oliviero, G. Nucleic Acids as Biotools at the Interface between Chemistry and Nanomedicine in the COVID-19 Era. Int. J. Mol. Sci.2022, 23, 4359. [Google Scholar] [CrossRef]
Costanzo, M.; De Giglio, M.A.R.; Roviello, G.N. Deciphering the Relationship between SARS-CoV-2 and Cancer. Int. J. Mol. Sci.2023, 24, 7803. [Google Scholar] [CrossRef]
Ricci, A.; Roviello, G.N. Exploring the Protective Effect of Food Drugs against Viral Diseases: Interaction of Functional Food Ingredients and SARS-CoV-2, Influenza Virus, and HSV. Life2023, 13, 402. [Google Scholar] [CrossRef]
Roviello, V.; Gilhen-Baker, M.; Roviello, G.N.; Lichtfouse, E. River therapy. Environ. Chem. Lett.2022, 20, 2729–2734. [Google Scholar] [CrossRef] [PubMed]
Roviello, V.; Musumeci, D.; Mokhir, A.; Roviello, G.N. Evidence of Protein Binding by a Nucleopeptide Based on a Thyminedecorated L-Diaminopropanoic Acid through CD and In Silico Studies. Curr. Med. Chem.2021, 28, 5004–5015. [Google Scholar] [CrossRef]
Autiero, I.; Roviello, G.N. Interaction of Laurusides 1 and 2 with the 3C-like Protease (Mpro) from Wild-Type and Omicron Variant of SARS-CoV-2: A Molecular Dynamics Study. Int. J. Mol. Sci.2023, 24, 5511. [Google Scholar] [CrossRef]
Roviello, V.; Scognamiglio, P.L.; Caruso, U.; Vicidomini, C.; Roviello, G.N. Evaluating In Silico the Potential Health and Environmental Benefits of Houseplant Volatile Organic Compounds for an Emerging ‘Indoor Forest Bathing’ Approach. Int. J. Environ. Res. Public Health2021, 19, 273. [Google Scholar] [CrossRef] [PubMed]
Zildzic, M.; Salihefendic, D.; Masic, I. Non-Pharmacological Measures in the Prevention and Treatment of COVID-19 Infection. Med. Arch.2021, 75, 307–312. [Google Scholar] [CrossRef] [PubMed]
Singh, T.U.; Parida, S.; Lingaraju, M.C.; Kesavan, M.; Kumar, D.; Singh, R.K. Drug repurposing approach to fight COVID-19. Pharmacol. Rep.2020, 72, 1479–1508. [Google Scholar] [CrossRef] [PubMed]
Li, B.; Lu, F.; Wei, X.; Zhao, R. Fucoidan: Structure and bioactivity. Molecules2008, 13, 1671–1695. [Google Scholar] [CrossRef]
Usov, A.I. Polysaccharides of the red algae. In Advances in Carbohydrate Chemistry and Biochemistry; Elsevier: Amsterdam, The Netherlands, 2011; Volume 65, pp. 115–217. [Google Scholar]
Duarte, M.E.; Noseda, M.D.; Cardoso, M.A.; Tulio, S.; Cerezo, A.S. The structure of a galactan sulfate from the red seaweed Bostrychia montagnei. Carbohydr. Res.2002, 337, 1137–1144. [Google Scholar] [CrossRef]
Sánchez, R.A.R.; Saluri, K.; Tuvikene, R.; Matulewicz, M.C.; Ciancia, M. Complex sulfated galactans from hot water extracts of red seaweed Asparagopsis taxiformis comprise carrageenan and agaran structures. Carbohydr. Polym.2023, 322, 121314. [Google Scholar] [CrossRef]
Darko, C.N.S.; Humayun, S.; Premarathna, A.D.; Howlader, M.M.; Rjabovs, V.; Tuvikene, R. Rheology and characterization of sulfated agarans from the edible epiphytic red alga, Vertebrata lanosa (truffle seaweed). Food Hydrocoll.2024, 151, 109770. [Google Scholar] [CrossRef]
Pereira, J.S.; Faria, R.X. Molecular Aspects of Carrageenan in the Pharmaceutical and Food Industries. Curr. Nutr. Food Sci.2024, 20, 466–475. [Google Scholar] [CrossRef]
Gaikwad, M. Sulfated polysaccharide from marine red microalga porphyridium against SARS-CoV-2—A mini-review. Acta Sci. Microbiol.2022, 5, 128–136. [Google Scholar] [CrossRef]
Graf, C.; Bernkop-Schnürch, A.; Egyed, A.; Koller, C.; Prieschl-Grassauer, E.; Morokutti-Kurz, M. Development of a nasal spray containing xylometazoline hydrochloride and iota-carrageenan for the symptomatic relief of nasal congestion caused by rhinitis and sinusitis. Int. J. Gen. Med.2018, 11, 275–283. [Google Scholar] [CrossRef] [PubMed]
Morokutti-Kurz, M.; Fröba, M.; Graf, P.; Große, M.; Grassauer, A.; Auth, J.; Schubert, U.; Prieschl-Grassauer, E. Iota-carrageenan neutralizes SARS-CoV-2 and inhibits viral replication in vitro. PLoS ONE2021, 16, e0237480. [Google Scholar] [CrossRef] [PubMed]
Li, M.; Miao, Z.-H.; Chen, Z.; Chen, Q.; Gui, M.; Lin, L.-P.; Sun, P.; Yi, Y.-H.; Ding, J. Echinoside A, a new marine-derived anticancer saponin, targets topoisomerase2α by unique interference with its DNA binding and catalytic cycle. Ann. Oncol.2010, 21, 597–607. [Google Scholar] [CrossRef]
Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Andryjaschenko, P.V.; Dmitrenok, P.S.; Menchinskaya, E.S.; Aminin, D.L.; Kalinin, V.I. Structure of cucumarioside I2 from the sea cucumber Eupentacta fraudatrix (Djakonov et Baranova) and cytotoxic and immunostimulatory activities of this saponin and relative compounds. Nat. Prod. Res.2013, 27, 1776–1783. [Google Scholar] [CrossRef] [PubMed]
Kang, N.; Heo, S.-Y.; Kim, E.-A.; Cha, S.-H.; Ryu, B.; Heo, S.-J.; Kang, N.; Heo, S.-Y.; Kim, E.-A.; Cha, S.-H. Antiviral effect of fucoxanthin obtained from Sargassum siliquastrum (Fucales, Phaeophyceae) against severe acute respiratory syndrome coronavirus 2. Algae2023, 38, 295–306. [Google Scholar] [CrossRef]
Kang, N.; Kim, E.-A.; Park, A.; Heo, S.-Y.; Heo, J.-H.; Heo, S.-J. Antiviral Potential of Fucoxanthin, an Edible Carotenoid Purified from Sargassum siliquastrum, against Zika Virus. Mar. Drugs2024, 22, 247. [Google Scholar] [CrossRef]
Costanzo, M.; De Giglio, M.A.R.; Gilhen-Baker, M.; Roviello, G.N. The chemical basis of seawater therapies: A review. Environ. Chem. Lett.2024, 22, 2133–2149. [Google Scholar] [CrossRef]
Hu, C. Marine natural products and human immunity: Novel biomedical resources for anti-infection of SARS-CoV-2 and related cardiovascular disease. Nat. Prod. Bioprospect.2024, 14, 12. [Google Scholar] [CrossRef]
Pittet, M.J.; Di Pilato, M.; Garris, C.; Mempel, T.R. Dendritic cells as shepherds of T cell immunity in cancer. Immunity2023, 56, 2218–2230. [Google Scholar] [CrossRef]
Asif, M.; Saleem, M.; Yaseen, H.S.; Yehya, A.H.S.; Saadullah, M.; Zubair, H.M.; Oon, C.E.; Khaniabadi, P.M.; Khalid, S.H.; Khan, I.U.; et al. Potential Role of Marine Species-Derived Bioactive Agents in the Management of SARS-CoV-2 Infection. Future Microbiol.2021, 16, 1289–1301. [Google Scholar] [CrossRef] [PubMed]
Vicidomini, C.; Fontanella, F.; D’Alessandro, T.; Roviello, G.N. A Survey on Computational Methods in Drug Discovery for Neurodegenerative Diseases. Biomolecules2024, 14, 1330. [Google Scholar] [CrossRef] [PubMed]
Fabre, J.-F.; Niangoran, N.; Gaignard, C.; Buso, D.; Mouloungui, Z.; Valentin, R. Extraction, purification and stability of C-phycocyanin from Arthrospira platensis. Eur. Food Res. Technol.2022, 248, 1583–1599. [Google Scholar] [CrossRef]
Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The essential medicinal chemistry of curcumin: Miniperspective. J. Med. Chem.2017, 60, 1620–1637. [Google Scholar] [CrossRef] [PubMed]
Glaser, J.; Holzgrabe, U. Focus on PAINS: False friends in the quest for selective anti-protozoal lead structures from Nature? MedChemComm2016, 7, 214–223. [Google Scholar] [CrossRef]
Baell, J.B. Feeling nature’s PAINS: Natural products, natural product drugs, and pan assay interference compounds (PAINS). J. Nat. Prod.2016, 79, 616–628. [Google Scholar] [CrossRef]
Aghasadeghi, M.R.; Zaheri Birgani, M.A.; Jamalimoghadamsiyahkali, S.; Hosamirudsari, H.; Moradi, A.; Jafari-Sabet, M.; Sadigh, N.; Rahimi, P.; Tavakoli, R.; Hamidi-Fard, M. Effect of high-dose Spirulina supplementation on hospitalized adults with COVID-19: A randomized controlled trial. Front. Immunol.2024, 15, 1332425. [Google Scholar] [CrossRef]
Quimque, M.T.J.; Notarte, K.I.R.; Fernandez, R.A.T.; Mendoza, M.A.O.; Liman, R.A.D.; Lim, J.A.K.; Pilapil, L.A.E.; Ong, J.K.H.; Pastrana, A.M.; Khan, A. Virtual screening-driven drug discovery of SARS-CoV2 enzyme inhibitors targeting viral attachment, replication, post-translational modification and host immunity evasion infection mechanisms. J. Biomol. Struct. Dyn.2021, 39, 4316–4333. [Google Scholar] [CrossRef]
Khan, M.T.; Ali, A.; Wang, Q.; Irfan, M.; Khan, A.; Zeb, M.T.; Zhang, Y.-J.; Chinnasamy, S.; Wei, D.-Q. Marine natural compounds as potents inhibitors against the main protease of SARS-CoV-2—A molecular dynamic study. J. Biomol. Struct. Dyn.2021, 39, 3627–3637. [Google Scholar] [CrossRef]
Robinson, P.C.; Richards, D.; Tanner, H.L.; Feldmann, M. Accumulating evidence suggests anti-TNF therapy needs to be given trial priority in COVID-19 treatment. Lancet Rheumatol.2020, 2, e653–e655. [Google Scholar] [CrossRef] [PubMed]
Magro, G. SARS-CoV-2 and COVID-19: Is interleukin-6 (IL-6) the ‘culprit lesion’of ARDS onset? What is there besides Tocilizumab? SGP130Fc. Cytokine X2020, 2, 100029. [Google Scholar] [CrossRef]
Kim, S.-K. Handbook of Marine Macroalgae: Biotechnology and Applied Phycology; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
Abdelrheem, D.A.; Ahmed, S.A.; Abd El-Mageed, H.; Mohamed, H.S.; Rahman, A.A.; Elsayed, K.N.; Ahmed, S.A. The inhibitory effect of some natural bioactive compounds against SARS-CoV-2 main protease: Insights from molecular docking analysis and molecular dynamic simulation. J. Environ. Sci. Health Part A2020, 55, 1373–1386. [Google Scholar] [CrossRef] [PubMed]
Rahman, N.; Basharat, Z.; Yousuf, M.; Castaldo, G.; Rastrelli, L.; Khan, H. Virtual screening of natural products against type II transmembrane serine protease (TMPRSS2), the priming agent of coronavirus 2 (SARS-CoV-2). Molecules2020, 25, 2271. [Google Scholar] [CrossRef] [PubMed]
Surti, M.; Patel, M.; Adnan, M.; Moin, A.; Ashraf, S.A.; Siddiqui, A.J.; Snoussi, M.; Deshpande, S.; Reddy, M.N. Ilimaquinone (marine sponge metabolite) as a novel inhibitor of SARS-CoV-2 key target proteins in comparison with suggested COVID-19 drugs: Designing, docking and molecular dynamics simulation study. RSC Adv.2020, 10, 37707–37720. [Google Scholar] [CrossRef]
Vijayaraj, R.; Altaff, K.; Rosita, A.S.; Ramadevi, S.; Revathy, J. Bioactive compounds from marine resources against novel corona virus (2019-nCoV): In silico study for corona viral drug. Nat. Prod. Res.2021, 35, 5525–5529. [Google Scholar] [CrossRef]
O’Keefe, B.R.; Giomarelli, B.; Barnard, D.L.; Shenoy, S.R.; Chan, P.K.; McMahon, J.B.; Palmer, K.E.; Barnett, B.W.; Meyerholz, D.K.; Wohlford-Lenane, C.L. Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family Coronaviridae. J. Virol.2010, 84, 2511–2521. [Google Scholar] [CrossRef]
Okechukwu, Q.N.; Adepoju, F.O.; Kanwugu, O.N.; Adadi, P.; Serrano-Aroca, Á.; Uversky, V.N.; Okpala, C.O.R. Marine-Derived Bioactive Metabolites as a Potential Therapeutic Intervention in Managing Viral Diseases: Insights from the SARS-CoV-2 In Silico and Pre-Clinical Studies. Pharmaceuticals2024, 17, 328. [Google Scholar] [CrossRef]
Banday, A.H.; ul Azha, N.; Farooq, R.; Sheikh, S.A.; Ganie, M.A.; Parray, M.N.; Mushtaq, H.; Hameed, I.; Lone, M.A. Exploring the potential of marine natural products in drug development: A comprehensive review. Phytochem. Lett.2024, 59, 124–135. [Google Scholar] [CrossRef]
Fernández, S.; Arnáiz, V.; Rufo, D.; Arroyo, Y. Current Status of Indole-Derived Marine Natural Products: Synthetic Approaches and Therapeutic Applications. Mar. Drugs2024, 22, 126. [Google Scholar] [CrossRef] [PubMed]
Pokharkar, O.; Zyryanov, G.V.; Tsurkan, M.V. Natural Products from Marine Actinomycete Genus Salinispora Might Inhibit 3CLpro and PLpro Proteins of SARS-CoV-2: An In Silico Evidence. Microbiol. Res.2023, 14, 1907–1941. [Google Scholar]
Lu, X.; Yuan, F.; Qiao, L.; Liu, Y.; Gu, Q.; Qi, X.; Li, J.; Li, D.; Liu, M. AS1041, a novel derivative of marine natural compound Aspergiolide A, induces senescence of leukemia cells via oxidative stress-induced DNA damage and BCR-ABL degradation. Biomed. Pharmacother.2024, 171, 116099. [Google Scholar] [CrossRef]
Hovhannisyan, A.M.; Tovmasyan, A.S.; Mkrtchyan, A.F.; Ghazaryan, K.R.; Minasyan, E.V.; Dallakyan, O.L.; Chobanyan, M.S.; Zakaryan, H.; Roviello, G.N.; Saghyan, A.S. Synthesis and evaluation of new mono- and binuclear salen complexes for the Cα-alkylation reaction of amino acid substrates as chiral phase transfer catalysts. Mol. Catal.2024, 569, 114618. [Google Scholar] [CrossRef]
Odeleye, T.; White, W.L.; Lu, J. Extraction techniques and potential health benefits of bioactive compounds from marine molluscs: A review. Food Funct.2019, 10, 2278–2289. [Google Scholar] [CrossRef]
Yakoot, M.; Salem, A. Spirulina platensis versus silymarin in the treatment of chronic hepatitis C virus infection. A pilot randomized, comparative clinical trial. BMC Gastroenterol.2012, 12, 32. [Google Scholar] [CrossRef]
Liu, J.; Luthuli, S.; Yang, Y.; Cheng, Y.; Zhang, Y.; Wu, M.; Choi, J.i.; Tong, H. Therapeutic and nutraceutical potentials of a brown seaweed Sargassum fusiforme. Food Sci. Nutr.2020, 8, 5195–5205. [Google Scholar] [CrossRef]
Sansone, C.; Brunet, C.; Noonan, D.M.; Albini, A. Marine Algal Antioxidants as Potential Vectors for Controlling Viral Diseases. Antioxidants2020, 9, 392. [Google Scholar] [CrossRef]
Narasimhan, A.L.; Lee, N.; Kim, S.; Kim, Y.-E.; Christabel, C.; Yu, H.; Kim, E.-J.; Oh, Y.-K. Enhanced astaxanthin production in Haematococcus lacustris by electrochemical stimulation of cyst germination. Bioresour. Technol.2024, 411, 131301. [Google Scholar] [CrossRef]
Raja, R.; Hemaiswarya, S. Microalgae and Immune Potential. In Dietary Components and Immune Function; Humana Press: Totowa, NJ, USA, 2010; pp. 515–527. [Google Scholar]
Devkar, H.U.; Thakur, N.L.; Kaur, P. Marine-derived antimicrobial molecules from the sponges and their associated bacteria. Can. J. Microbiol.2023, 69, 1–16. [Google Scholar] [CrossRef]
Paintsil, E.; Cheng, Y.-C. Antiviral agents. In Encyclopedia of Microbiology; Elsevier: Amsterdam, The Netherlands, 2019; p. 176. [Google Scholar]
Mayer, A.M.; Glaser, K.B.; Cuevas, C.; Jacobs, R.S.; Kem, W.; Little, R.D.; McIntosh, J.M.; Newman, D.J.; Potts, B.C.; Shuster, D.E. The odyssey of marine pharmaceuticals: A current pipeline perspective. Trends Pharmacol. Sci.2010, 31, 255–265. [Google Scholar] [CrossRef] [PubMed]
El-Hawary, S.S.; Sayed, A.M.; Mohammed, R.; Hassan, H.M.; Rateb, M.E.; Amin, E.; Mohammed, T.A.; El-Mesery, M.; Bin Muhsinah, A.; Alsayari, A. Bioactive brominated oxindole alkaloids from the Red Sea sponge Callyspongia siphonella. Mar. Drugs2019, 17, 465. [Google Scholar] [CrossRef] [PubMed]
Wietz, M.; Mansson, M.; Gotfredsen, C.H.; Larsen, T.O.; Gram, L. Antibacterial compounds from marine Vibrionaceae isolated on a global expedition. Mar. Drugs2010, 8, 2946–2960. [Google Scholar] [CrossRef]
Fischbach, M.A.; Walsh, C.T.; Clardy, J. The evolution of gene collectives: How natural selection drives chemical innovation. Proc. Natl. Acad. Sci. USA2008, 105, 4601–4608. [Google Scholar] [CrossRef]
Mahajan, G.; Thomas, B.; Parab, R.; Patel, Z.E.; Kuldharan, S.; Yemparala, V.; Mishra, P.D.; Ranadive, P.; D’Souza, L.; Pari, K. In vitro and in vivo activities of antibiotic PM181104. Antimicrob. Agents Chemother.2013, 57, 5315–5319. [Google Scholar] [CrossRef]
Kumar, R.; Subramani, R.; Feussner, K.-D.; Aalbersberg, W. Aurantoside K, a new antifungal tetramic acid glycoside from a Fijian marine sponge of the genus Melophlus. Mar. Drugs2012, 10, 200–208. [Google Scholar] [CrossRef] [PubMed]
Martínez-Poveda, B.; Quesada, A.R.; Medina, M.Á. Pleiotropic role of puupehenones in biomedical research. Mar. Drugs2017, 15, 325. [Google Scholar] [CrossRef]
Deutsch, C.; Penn, J.L.; Lucey, N. Climate, oxygen, and the future of marine biodiversity. Annu. Rev. Mar. Sci.2024, 16, 217–245. [Google Scholar] [CrossRef]
Dube, K. A comprehensive review of climatic threats and adaptation of marine biodiversity. J. Mar. Sci. Eng.2024, 12, 344. [Google Scholar] [CrossRef]
Rocha, R.; Azevedo, F.; Oliveira, U.; Cardoso, M.; Clerier, P.; Fortes, R.; Lopes-Filho, E.; Lorini, M.; Miranda, L.; Moura, R. West Atlantic coastal marine biodiversity: The contribution of the platform iNaturalist. Aquat. Ecol.2024, 58, 57–71. [Google Scholar] [CrossRef]
Sanina, N. Vaccine adjuvants derived from marine organisms. Biomolecules2019, 9, 340. [Google Scholar] [CrossRef] [PubMed]
Jo, S.-H.; Kim, C.; Park, S.-H. Novel marine organism-derived extracellular vesicles for control of anti-inflammation. Tissue Eng. Regen. Med.2021, 18, 71–79. [Google Scholar] [CrossRef] [PubMed]
Sheikhhossein, H.H.; Iommelli, F.; Di Pietro, N.; Curia, M.C.; Piattelli, A.; Palumbo, R.; Roviello, G.N.; De Rosa, V. Exosome-like Systems: From Therapies to Vaccination for Cancer Treatment and Prevention—Exploring the State of the Art. Vaccines2024, 12, 519. [Google Scholar] [CrossRef] [PubMed]
Younes, I.; Rinaudo, M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs2015, 13, 1133–1174. [Google Scholar] [CrossRef]
Kurita, K. Chitin and chitosan: Functional biopolymers from marine crustaceans. Mar. Biotechnol.2006, 8, 203–226. [Google Scholar] [CrossRef]
Marzano, M.; Borbone, N.; Amato, F.; Oliviero, G.; Fucile, P.; Russo, T.; Sannino, F. 3D Chitosan-Gallic Acid Complexes: Assessment of the Chemical and Biological Properties. Gels2022, 8, 124. [Google Scholar] [CrossRef] [PubMed]
Chuang, C.-C.; Tsai, M.-H.; Yen, H.-J.; Shyu, H.-F.; Cheng, K.-M.; Chen, X.-A.; Chen, C.-C.; Young, J.-J.; Kau, J.-H. A fucoidan-quaternary chitosan nanoparticle adjuvant for anthrax vaccine as an alternative to CpG oligodeoxynucleotides. Carbohydr. Polym.2020, 229, 115403. [Google Scholar] [CrossRef]
Tsai, M.; Chuang, C.; Chen, C.; Yen, H.; Cheng, K.; Chen, X.; Shyu, H.; Lee, C.; Young, J.; Kau, J. Nanoparticles assembled from fucoidan and trimethylchitosan as anthrax vaccine adjuvant: In vitro and in vivo efficacy in comparison to CpG. Carbohydr. Polym.2020, 236, 116041. [Google Scholar] [CrossRef]
Divya, K.; Jisha, M. Chitosan nanoparticles preparation and applications. Environ. Chem. Lett.2018, 16, 101–112. [Google Scholar] [CrossRef]
Ege, H.; Ege, Z.R.; Gunduz, O. Marine-Derived Materials for the Development of Advanced Drug Delivery Systems. In Handbook of the Extracellular Matrix; Elsevier: Amsterdam, The Netherlands, 2024; pp. 1–15. [Google Scholar]
Barbosa, A.I.; Coutinho, A.J.; Costa Lima, S.A.; Reis, S. Marine Polysaccharides in Pharmaceutical Applications: Fucoidan and Chitosan as Key Players in the Drug Delivery Match Field. Mar. Drugs2019, 17, 654. [Google Scholar] [CrossRef]
Carroll, E.C.; Jin, L.; Mori, A.; Munoz-Wolf, N.; Oleszycka, E.; Moran, H.B.; Mansouri, S.; McEntee, C.P.; Lambe, E.; Agger, E.M. The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity2016, 44, 597–608. [Google Scholar] [CrossRef] [PubMed]
Riteau, N.; Sher, A. Chitosan: An adjuvant with an unanticipated STING. Immunity2016, 44, 522–524. [Google Scholar] [CrossRef] [PubMed]
Haque, N.; Parveen, S.; Tang, T.; Wei, J.; Huang, Z. Marine Natural Products in Clinical Use. Mar. Drugs2022, 20, 528. [Google Scholar] [CrossRef] [PubMed]
Suleria, H.; Osborne, S.; Masci, P.; Gobe, G. Marine-Based Nutraceuticals: An Innovative Trend in the Food and Supplement Industries. Mar. Drugs2015, 13, 6336–6351. [Google Scholar] [CrossRef] [PubMed]
Odeleye, T.; Zeng, Z.; White, W.L.; Wang, K.S.; Li, H.; Xu, X.; Xu, H.; Li, J.; Ying, T.; Zhang, B.; et al. Effects of preparation method on the biochemical characterization and cytotoxic activity of New Zealand surf clam extracts. Heliyon2020, 6, e04357. [Google Scholar] [CrossRef]
Guo, K.; Su, L.; Wang, Y.; Liu, H.; Lin, J.; Cheng, P.; Yin, X.; Liang, M.; Wang, Q.; Huang, Z. Antioxidant and anti-aging effects of a sea cucumber protein hydrolyzate and bioinformatic characterization of its composing peptides. Food Funct.2020, 11, 5004–5016. [Google Scholar] [CrossRef]
Dalisay, D.S.; Tenebro, C.P.; Sabido, E.M.; Suarez, A.F.L.; Paderog, M.J.V.; Reyes-Salarda, R.; Saludes, J.P. Marine-Derived Anticancer Agents Targeting Apoptotic Pathways: Exploring the Depths for Novel Cancer Therapies. Mar. Drugs2024, 22, 114. [Google Scholar] [CrossRef]
Liu, Y.; Zhou, Z.; Sun, S. Prospects of marine-derived compounds as potential therapeutic agents for glioma. Pharm. Biol.2024, 62, 513–526. [Google Scholar] [CrossRef]
Chien, S.; Reiter, L.T.; Bier, E.; Gribskov, M. Homophila: Human disease gene cognates in Drosophila. Nucleic Acids Res.2002, 30, 149–151. [Google Scholar] [CrossRef]
Pandey, U.B.; Nichols, C.D. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev.2011, 63, 411–436. [Google Scholar] [CrossRef]
Rand, M.D.; Tennessen, J.M.; Mackay, T.F.; Anholt, R.R. Perspectives on the Drosophila melanogaster model for advances in toxicological science. Curr. Protoc.2023, 3, e870. [Google Scholar] [CrossRef] [PubMed]
Cagan, R. Drug Screening Using Model Systems: Some Basics; The Company of Biologists Ltd.: Cambridge, UK, 2016; Volume 9, pp. 1241–1244. [Google Scholar]
Millet-Boureima, C.; Selber-Hnatiw, S.; Gamberi, C. Drug discovery and chemical probing in Drosophila. Genome2021, 64, 147–159. [Google Scholar] [CrossRef] [PubMed]
DeLoriea, J.; Millet-Boureima, C.; Gamberi, C. Protocol to build a drug-testing pipeline using large populations of Drosophila melanogaster. STAR Protoc.2023, 4, 102747. [Google Scholar] [CrossRef] [PubMed]
Roviello, G.N.; Musumeci, D.; Bucci, E.M.; Pedone, C. Evidences for supramolecular organization of nucleopeptides: Synthesis, spectroscopic and biological studies of a novel dithymine L-serine tetrapeptide. Mol. BioSyst.2011, 7, 1073–1080. [Google Scholar]
Oceanic Breakthroughs: Marine-Derived Innovations in Vaccination, Therapy, and Immune Health
The vast, untapped potential of the world’s oceans is revealing groundbreaking advancements in human health and vaccination. Microalgae such as Nannochloropsis spp. and Dunaliella salina are emerging as resources for recombinant vaccine development with specific and heterologous genetic tools used to boost production of functional recombinant antigens in Dunaliella salina and Nannochloropsis spp. to induce immunoprotection. In humans, several antigens produced in microalgae have shown potential in combating diseases caused by the human papillomavirus, human immunodeficiency virus, hepatitis B virus, influenza virus, Zika virus, Zaire Ebola virus, Plasmodium falciparum, and Staphylococcus aureus. For animals, microalgae-derived vaccine prototypes have been developed to fight against the foot-and-mouth disease virus, classical swine fever virus, vibriosis, white spot syndrome virus, and Histophilus somni. Marine organisms offer unique advantages, including the ability to express complex antigens and sustainable production. Additionally, the oceans provide an array of bioactive compounds that serve as therapeutics, potent adjuvants, delivery systems, and immunomodulatory agents. These innovations from the sea not only enhance vaccine efficacy but also contribute to broader immunological and general health. This review explores the transformative role of marine-derived substances in modern medicine, emphasizing their importance in the ongoing battle against infectious diseases.
Oceanic Breakthroughs: Marine-Derived Innovations in Vaccination, Therapy, and Immune Health
No results.
Oceanic Breakthroughs: Marine-Derived Innovations in Vaccination, Therapy, and Immune Health