Department of Environmental Science, Second University of Naples, Naples, Italy
Institute of Genetics and Biophysics A. Buzzati-Traverso, Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
Department of Structural and Functional Biology, University of Naples Federico II, Naples, Italy
Stem Cell Fate Laboratory, Institute of Genetics and Biophysics, A. Buzzati-Traverso, CNR, Via Pietro Castellino 111, 80,131 Naples, Italy
Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
Florey Neuroscience Institutes, University of Melbourne, Parkville, VIC, Australia
Centre for Neurosciences, University of Melbourne, Parkville, VIC, Australia
Department of Biological Science, University of Naples, Napoli, Italy
Institute of Biostructure and Bioimaging, CNR, Naples, Italy
Dipartimento di Chimica, Università della Basilicata, Via N. Sauro 85, 85100 Polenza, Italy
Biocrystallography Research Centre, C.N.R., Univ. Federico II di Napoli, via Mezzocannone, 4, 80134 Napoli, Italy
Department Pharmaceutical Chemistry, University of London, Brunswick Square 29, WC IN 1AX London, United Kingdom
Institut de Chimie, Université de Neuchâtel, Av. de Bellevaux 51, 2000 Neuchâtel, Switzerland
Dipartimento di Scienze Chimiche, Università di Catania, V.le A. Doria 8, 95125, Catania, Italy
Ist. Stud. delle Sostanze N., V.le A. Doria 8, 95125 Catania, Italy
References: Arboleda, V.A., (2012) Nat. Genet., 44, pp. 788-79
Borriello, A., (2011) Mol. Cancer Res., 9, pp. 1269-1284
Choufani, S., Shuman, C., Weksberg, R., (2010) Am. J. Med. Genet. C. Semin. Med. Genet., 154 C, pp. 343-354
Eggermann, T., (2010) Am. J. Med. Genet. C. Semin. Med. Genet., 154 C, pp. 355-364
Zhang, P., (1997) Nature, 387, pp. 151-158
Kim, Y., Starostina, N.G., Kipreos, E.T., (2008) Genes Dev., 22, pp. 2507-2519
Dinkel, H., (2012) Nucleic Acids Res., 40, pp. D242-D251
Havens, C.G., Walter, J.C., (2011) Genes Dev., 25, pp. 1568-1582
Watanabe, H., (1998) Proc. Natl. Acad. Sci. USA, 95, pp. 1392-1397
Kamura, T., (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 10231-10236
Pateras, I.S., (2006) Int. J. Cancer, 119, pp. 2546-2556
Terai, K., Abbas, T., Jazaeri, A.A., Dutta, A., (2010) Mol. Cell, 37, pp. 143-149
Strizzi, L., Bianco, C., Normanno, N., Salomon, D., Cripto-1: A multifunctional modulator during embryogenesis and oncogenesis (2005) Oncogene, 24 (37), pp. 5731-5741. , DOI 10.1038/sj.onc.1208918, PII 120891
Minchiotti, G., Nodal-dependant Cripto signaling in ES cells: From stem cells to tumor biology (2005) Oncogene, 24, pp. 5668-5675
Cheng, S.K., Olale, F., Bennett, J.T., EGF-CFC proteins are essential coreceptors for the TGF-beta signals Vg1 and GDF1 (2003) Genes Dev, 17, pp. 31-36
Reissmann, E., Jornvall, H., Blokzijl, A., The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development (2001) Genes Dev, 15, pp. 2010-2022
Schier, A.F., Chemokine signaling: Rules of attraction (2003) Curr Biol, 13, pp. R192-R194
Gray, P.C., Harrison, C.A., Vale, W., Cripto forms a complex with activin and type II activin receptors and can block activin signaling (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (9), pp. 5193-5198. , DOI 10.1073/pnas.0531290100
Kelber, J.A., Shani, G., Booker, E.C., Vale, W.W., Gray, P.C., Cripto is a non-competitive activin antagonist that forms analogous signaling complexes with activin and nodal (2008) J Biol Chem, 283, pp. 4490-4500
Gray, P.C., Shani, G., Aung, K., Cripto binds transforming growth factor beta (TGF-beta) and inhibits TGF-beta signaling (2006) Mol Cell Biol, 26, pp. 9268-9278
Shani, G., Fischer, W.H., Justice, N.J., GRP78 and Cripto form a complex at the cell surface and collaborate to inhibit transforming growth factor beta signaling and enhance cell growth (2008) Mol Cell Biol, 28, pp. 666-677
Shukla, A., Ho, Y., Liu, X., Ryscavage, A., Glick, A.B., Cripto-1 alters keratinocyte differentiation via blockade of transforming growth factor-beta1 signaling: Role in skin carcinogenesis (2008) Molecular Cancer Research, 6 (3), pp. 509-516. , http://mcr.aacrjournals.org/cgi/reprint/6/3/509, DOI 10.1158/1541-7786.MCR-07-0396
Parisi, S., D'Andrea, D., Lago, C.T., Adamson, E.D., Persico, M.G., Minchiotti, G., Nodal-dependent Cripto signaling promotes cardiomyogenesis and redirects the neural fate of embryonic stem cells (2003) Journal of Cell Biology, 163 (2), pp. 303-314. , DOI 10.1083/jcb.200303010
Parish, C.L., Parisi, S., Persico, M.G., Cripto as a target for improving embryonic stem cell-based therapy in Parkinson's disease (2005) Stem Cells, 23, pp. 471-476
Sonntag, K.C., Simantov, R., Bjorklund, L., Context-dependent neuronal differentiation and germ layer induction of Smad4(-/-) and Cripto(-/-) embryonic stem cells (2005) Mol Cell Neurosci, 28, pp. 417-429
Parish, C.L., Arenas, E., Stem-cell-based strategies for the treatment of parkinson's disease (2007) Neurodegenerative Diseases, 4 (4), pp. 339-347. , DOI 10.1159/000101892
Lindvall, O., Hagell, P., Clinical observations after neural transplantation in Parkinson's disease (2000) Prog Brain Res, 127, pp. 299-320
Winkler, C., Kirik, D., Bjorklund, A., Cell transplantation in Parkinson's disease: How can we make it work? (2005) Trends Neurosci, 28, pp. 86-92
Kriks, S., Studer, L., Protocols for generating ES cell-derived dopamine neurons (2009) Adv Exp Med Biol, 651, pp. 101-111
Koch, P., Kokaia, Z., Lindvall, O., Emerging concepts in neural stem cell research: Autologous repair and cell-based disease modelling (2009) Lancet Neurol, 8, pp. 819-829
Li, J.Y., Christophersen, N.S., Hall, V., Critical issues of clinical human embryonic stem cell therapy for brain repair (2008) Trends Neurosci, 31, pp. 146-153. , Mar
Lindvall, O., Kokaia, Z., Prospects of stem cell therapy for replacing dopamine neurons in Parkinson's disease (2009) Trends Pharmacol Sci, 30, pp. 260-267
Jonsson, M.E., Ono, Y., Bjorklund, A., Identification of transplantable dopamine neuron precursors at different stages of midbrain neurogenesis (2009) Exp Neurol, 219, pp. 341-354
Chung, S., Shin, B.S., Hedlund, E., Genetic selection of sox1GFP-expressing neural precursors removes residual tumorigenic pluripotent stem cells and attenuates tumor formation after transplantation (2006) J Neurochem, 97, pp. 1467-1480
Hedlund, E., Pruszak, J., Lardaro, T., Embryonic stem cell-derived Pitx3-enhanced green fluorescent protein midbrain dopamine neurons survive enrichment by fluorescence-activated cell sorting and function in an animal model of Parkinson's disease (2008) Stem Cells, 26, pp. 1526-1536
Villaescusa, J.C., Arenas, E., Transplantable midbrain dopamine neurons: A moving target (2010) Exp Neurol, 222, pp. 173-178
Friling, S., Andersson, E., Thompson, L.H., Efficient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells (2009) Proc Natl Acad Sci USA, 106, pp. 7613-7618
Sonntag, K.-C., Pruszak, J., Yoshizaki, T., Van Arensbergen, J., Sanchez-Pernaute, R., Isacson, O., Enhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from human embryonic stem cells using the bone morphogenic protein antagonist noggin (2007) Stem Cells, 25 (2), pp. 411-418. , http://stemcells.alphamedpress.org/cgi/reprint/25/2/411.pdf, DOI 10.1634/stemcells.2006-0380
Chiba, S., Lee, Y.M., Zhou, W., Noggin enhances dopamine neuron production from human embryonic stem cells and improves behavioral outcome after transplantation into Parkinsonian rats (2008) Stem Cells, 26, pp. 2810-2820
Chambers, S.M., Fasano, C.A., Papapetrou, E.P., Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling (2009) Nat Biotechnol, 27, pp. 275-280
Marino, M., Ruvo, M., De Falco, S., Prevention of systemic lupus erythematosus in MRL/lpr mice by administration of an immunoglobulin-binding peptide (2000) Nat Biotechnol, 18, pp. 735-739
Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W., Roder, J.C., Derivation of completely cell culture-derived mice from early-passage embryonic stem cells (1993) Proceedings of the National Academy of Sciences of the United States of America, 90 (18), pp. 8424-8428
Xu, C., Liguori, G., Adamson, E.D., Specific arrest of cardiogenesis in cultured embryonic stem cells lacking Cripto-1 (1998) Dev Biol, 196, pp. 237-247
Minchiotti, G., Parisi, S., Persico, M.G., Cripto signaling in differentiating embryonic stem cells (2006) Methods Mol Biol, 329, pp. 151-169
Paxinos, G., Watson, C., (1998) The Rat Brain in Stereotaxic Co-ordinates, , 3rd ed. Sydney: Academic Press
Tam, J.P., Synthetic peptide vaccine design: Synthesis and properties of a high-density multiple antigenic peptide system (1988) Proc Natl Acad Sci USA, 85, pp. 5409-5413
Boheler, K.R., Crider, D.G., Tarasova, Y., Cardiomyocytes derived from embryonic stem cells (2005) Methods Mol Med, 108, pp. 417-435
Smidt, M.P., Smits, S.M., Burbach, J.P., Homeobox gene Pitx3 and its role in the development of dopamine neurons of the substantia nigra (2004) Cell Tissue Res, 318, pp. 35-43
Ye, W., Shimamura, K., Rubenstein, J.L.R., Hynes, M.A., Rosenthal, A., FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate (1998) Cell, 93 (5), pp. 755-766. , DOI 10.1016/S0092-8674(00)81437-3
Castelo-Branco, G., Wagner, J., Rodriguez, F.J., Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a (2003) Proc Natl Acad Sci USA, 100, pp. 12747-12752
Barberi, T., Klivenyi, P., Calingasan, N.Y., Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice (2003) Nat Biotechnol, 21, pp. 1200-1207
Schein, J.C., Hunter, D.D., Roffler-Tarlov, S., Girk2 expression in the ventral midbrain, cerebellum, and olfactory bulb and its relationship to the murine mutation weaver (1998) Developmental Biology, 204 (2), pp. 432-450. , DOI 10.1006/dbio.1998.9076
Adkins, H.B., Bianco, C., Schiffer, S.G., Antibody blockade of the Cripto CFC domain suppresses tumor cell growth in vivo (2003) J Clin Invest, 112, pp. 575-587
Li, W., Ding, S., Small molecules that modulate embryonic stem cell fate and somatic cell reprogramming (2010) Trends Pharmacol Sci, 31, pp. 36-45
Ding, S., Schultz, P.G., A role for chemistry in stem cell biology (2004) Nat Biotechnol, 22, pp. 833-840
Chen, S., Do, J.T., Zhang, Q., Self-renewal of embryonic stem cells by a small molecule (2006) Proc Natl Acad Sci USA, 103, pp. 17266-17271
Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A.E., Melton, D.A., Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds (2008) Nature Biotechnology, 26 (7), pp. 795-797. , DOI 10.1038/nbt1418, PII NBT1418
Borowiak, M., Maehr, R., Chen, S., Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells (2009) Cell Stem Cell, 4, pp. 348-358
Schmierer, B., Hill, C.S., TGFbeta-SMAD signal transduction: Molecular specificity and functional flexibility (2007) Nat Rev Mol Cell Biol, 8, pp. 970-982
Inman, G.J., Nicolas, F.J., Callahan, J.F., SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7 (2002) Mol Pharmacol, 62, pp. 65-74
Kim, J.H., Auerbach, J.M., Rodriguez-Gomez, J.A., Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease (2002) Nature, 418, pp. 50-56
Fukuda, H., Takahashi, J., Watanabe, K., Fluorescence-activated cell sorting-based purification of embryonic stem cell-derived neural precursors averts tumor formation after transplantation (2006) Stem Cells, 24, pp. 763-771
Cheng, S. K., Olale, F., Bennett, J. T., EGF-CFC proteins are essential coreceptors for the TGF-beta signals Vg1 and GDF1 (2003) Genes Dev, 17, pp. 31-36
Schier, A. F., Chemokine signaling: Rules of attraction (2003) Curr Biol, 13, pp. R192-R194
Gray, P. C., Harrison, C. A., Vale, W., Cripto forms a complex with activin and type II activin receptors and can block activin signaling (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (9), pp. 5193-5198. , DOI 10. 1073/pnas. 0531290100
Kelber, J. A., Shani, G., Booker, E. C., Vale, W. W., Gray, P. C., Cripto is a non-competitive activin antagonist that forms analogous signaling complexes with activin and nodal (2008) J Biol Chem, 283, pp. 4490-4500
Gray, P. C., Shani, G., Aung, K., Cripto binds transforming growth factor beta (TGF-beta) and inhibits TGF-beta signaling (2006) Mol Cell Biol, 26, pp. 9268-9278
Parish, C. L., Parisi, S., Persico, M. G., Cripto as a target for improving embryonic stem cell-based therapy in Parkinson's disease (2005) Stem Cells, 23, pp. 471-476
Sonntag, K. C., Simantov, R., Bjorklund, L., Context-dependent neuronal differentiation and germ layer induction of Smad4 (-/-) and Cripto (-/-) embryonic stem cells (2005) Mol Cell Neurosci, 28, pp. 417-429
Parish, C. L., Arenas, E., Stem-cell-based strategies for the treatment of parkinson's disease (2007) Neurodegenerative Diseases, 4 (4), pp. 339-347. , DOI 10. 1159/000101892
Li, J. Y., Christophersen, N. S., Hall, V., Critical issues of clinical human embryonic stem cell therapy for brain repair (2008) Trends Neurosci, 31, pp. 146-153. , Mar
Jonsson, M. E., Ono, Y., Bjorklund, A., Identification of transplantable dopamine neuron precursors at different stages of midbrain neurogenesis (2009) Exp Neurol, 219, pp. 341-354
Villaescusa, J. C., Arenas, E., Transplantable midbrain dopamine neurons: A moving target (2010) Exp Neurol, 222, pp. 173-178
Sonntag, K. -C., Pruszak, J., Yoshizaki, T., Van Arensbergen, J., Sanchez-Pernaute, R., Isacson, O., Enhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from human embryonic stem cells using the bone morphogenic protein antagonist noggin (2007) Stem Cells, 25 (2), pp. 411-418. , http: //stemcells. alphamedpress. org/cgi/reprint/25/2/411. pdf, DOI 10. 1634/stemcells. 2006-0380
Chiba, S., Lee, Y. M., Zhou, W., Noggin enhances dopamine neuron production from human embryonic stem cells and improves behavioral outcome after transplantation into Parkinsonian rats (2008) Stem Cells, 26, pp. 2810-2820
Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling (2009) Nat Biotechnol, 27, pp. 275-280
Tam, J. P., Synthetic peptide vaccine design: Synthesis and properties of a high-density multiple antigenic peptide system (1988) Proc Natl Acad Sci USA, 85, pp. 5409-5413
Boheler, K. R., Crider, D. G., Tarasova, Y., Cardiomyocytes derived from embryonic stem cells (2005) Methods Mol Med, 108, pp. 417-435
Smidt, M. P., Smits, S. M., Burbach, J. P., Homeobox gene Pitx3 and its role in the development of dopamine neurons of the substantia nigra (2004) Cell Tissue Res, 318, pp. 35-43
Parish, C. L., Castelo-Branco, G., Rawal, N., Wnt5a-treated midbrain neural stem cells improve dopamine cell replacement therapy in parkinsonian mice (2008) J Clin Invest, 118, pp. 149-160
Schein, J. C., Hunter, D. D., Roffler-Tarlov, S., Girk2 expression in the ventral midbrain, cerebellum, and olfactory bulb and its relationship to the murine mutation weaver (1998) Developmental Biology, 204 (2), pp. 432-450. , DOI 10. 1006/dbio. 1998. 9076
Adkins, H. B., Bianco, C., Schiffer, S. G., Antibody blockade of the Cripto CFC domain suppresses tumor cell growth in vivo (2003) J Clin Invest, 112, pp. 575-587
Chen, S., Do, J. T., Zhang, Q., Self-renewal of embryonic stem cells by a small molecule (2006) Proc Natl Acad Sci USA, 103, pp. 17266-17271
Inman, G. J., Nicolas, F. J., Callahan, J. F., SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7 (2002) Mol Pharmacol, 62, pp. 65-74
Kim, J. H., Auerbach, J. M., Rodriguez-Gomez, J. A., Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease (2002) Nature, 418, pp. 50-56
Saenger, W., (1980) Angew. Chem., Int. Ed. Engl., 19, p. 34
Szejtli, J., (1982) Cyclodextrins and Their Inclusion Complexes, , Akademiai Kiado: Budapest
Harata, K., Uekama, K., Otagiri, M., Hirayama, F., (1983) Bull. Chem. Soc. Jpn., 56, p. 1732
Harata, K., (1984) Chem. Lett., p. 1961
Di Blasio, B., Pavone, V., Nastri, F., Isemia, C., Saviano, M., Pedone, C., Cucinotta, V., Rizzarelli, E., (1992) Proc. Natl. Acad. Sci. USA, 89, p. 7218
Cucinotta, V., D'Alessandro, F., Impellizzeri, G., Vecchio, G., (1992) J. Chem. Soc., Chem. Commun., p. 1743
Betzel, C., Saenger, W., Hingerty, B.E., Brown, G.M., (1984) J. Am. Chem. Soc., 106, p. 7545
Lindner, K., Saenger, W., (1982) Carbohydr. Res., 99, p. 103
Zabel, V., Saenger, W., Mason, S.A., (1986) J. Am. Chem. Soc., 108, p. 3663
Le Bas, G., PhD Thesis, Univ. de Pierre et Marie Curie, Paris, FranceMavridis, I., Hadjoudis, E., Tsoucaris, G., (1990) Mol. Crysl. Liq. Cryst., 186, p. 185
Harata, K., Kawano, K., Fukunaga, K., Ohtani, Y., (1983) Chem. Pharm. Bull. Jpn., 31, p. 1428
Tardel, D.S., Yamoto, Y., Pope, B.M., (1972) Proc. Nat. Acad. Sci. USA, 69, p. 730
Bonomo, R.P., Cucinotta, V., D'Alessandro, F., Impellizzeri, G., Maccarrone, G., Vecchio, G., Rizzarelli, E., (1991) Inorg. Chem., 30, p. 2708
Egert, E., Sheldrick, G.M., (1985) Acta Cryst., A41, p. 262
Altomare, A., Burla, M.C., Camalli, M., Cascarano, G., Giacovazzo, C., Gugliardi, A., Polidori, G.J., (1994) Applied Cryst., 27, p. 635
Cromer, D.T., Waber, J.T., (1974) International Tables for X-Ray Crystallography, 4. , Kynoch Press, Birmingham, United Kingdom, Table 2.2.B
Cremer, D., Pople, J.A., (1975) J. Am. Chem. Soc., 97, p. 1354
Gain of function in CDKN1C
Loss-of-function mutations in the gene encoding the cyclin-dependent kinase inhibitor CDKN1C cause Beckwith-Wiedemann syndrome and cancer. A new study now identifies potentially gain-of-function missense mutations in CDKN1C that cause the undergrowth-associated IMAGe syndrome.