Amino acid transport in thermophiles: characterization of an arginine-binding protein in Thermotoga maritima(593 views) Luchansky MS, Der BS, D'Auria S, Pocsfalvi G, Iozzino L, Marasco D, Dattelbaum JD
Keywords: Arginine, Bacterial Protein, Periplasmic Binding Protein, Article, Chemistry, Circular Dichroism, Electrospray Mass Spectrometry, Genetics, Metabolism, Protein Folding, Spectrofluorometry, Thermotoga Maritima, Transport At The Cellular Level, Biological Transport, Fluorescence, Electrospray Ionization, Bacteria (microorganisms), Escherichia Coli,
Affiliations: *** IBB - CNR ***
Department of Chemistry, University of Richmond, Gottwald Center for the Sciences, 28 Westhampton Way, Richmond, VA 23173, United States
Institute of Protein Biochemistry, CNR, Naples, Italy
University of Naples Federico II, Naples, Italy
References: Huber, R., Langworthy, T.A., Konig, H., Thomm, M., Woese, C.R., Sleytr, U.B., Stetter, K.O., Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °c (1986) Arch. Microbiol., 144, pp. 324-33
Achenbach-Richter, L., Gupta, R., Stetter, K.O., Woese, C.R., Were the original Eubacteria thermophiles (1987) Syst. Appl. Microbiol., 9, pp. 34-39
Worning, P., Jensen, L.J., Nelson, K.E., Brunak, S., Ussery, D.W., Structural analysis of DNA sequence: Evidence for lateral gene transfer in Thermotoga maritima (2000) Nucleic Acids Res., 28, pp. 706-709
Nelson, K.E., Clayton, R.A., Gill, S.R., Gwinn, M.L., Dodson, R.J., Haft, D.H., Hickey, E.K., Fraser, C.M., Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima (1999) Nature, 399, pp. 323-329
Higgins, C.F., ABC transporters: From microorganisms to man (1992) Annu. Rev. Cell Biol., 8, pp. 67-113
Ethayathulla, A.S., Bessho, Y., Shinkai, A., Padmanabhan, B., Singh, T.P., Kaur, P., Yokoyama, S., Purification, crystallization and preliminary X-ray diffraction analysis of the putative ABC transporter ATP-binding protein from Thermotoga maritima (2008) Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun., 64, pp. 498-500
Nanavati, D.M., Nguyen, T.N., Noll, K.M., Substrate specificities and expression patterns reflect the evolutionary divergence of maltose ABC transporters in Thermotoga maritima (2005) J. Bacteriol., 187, pp. 2002-2009
De Lorimier, R.M., Smith, J.J., Dwyer, M.A., Looger, L.L., Sali, K.M., Paavola, C.D., Rizk, S.S., Hellinga, H.W., Construction of a fluorescent biosensor family (2002) Protein Sci., 11, pp. 2655-2675
Marvin, J.S., Corcoran, E.E., Hattangadi, N.A., Zhang, J.V., Gere, S.A., Hellinga, H.W., The rational design of allosteric interactions in a monomeric protein and its applications to the construction of biosensors (1997) Proc. Natl. Acad. Sci. U. S. A., 94, pp. 4366-4371
Tolosa, L., Gryczynski, I., Eichhorn, L.R., Dattelbaum, J.D., Castellano, F.N., Rao, G., Lakowicz, J.R., Glucose sensor for low-cost lifetime-based sensing using a genetically engineered protein (1999) Anal. Biochem., 267, pp. 114-120
Dattelbaum, J.D., Lakowicz, J.R., Optical determination of glutamine using a genetically engineered protein (2001) Anal. Biochem., 291, pp. 89-95
Brune, M., Hunter, J.L., Corrie, J.E.T., Webb, M.R., Direct, Real-Time Measurement of Rapid Inorganic Phosphate Release Using a Novel Fluorescent Probe and Its Application to Actomyosin Subfragment ATPase (1994) Biochemistry, 33, pp. 8262-8271
Salins, L.L., Goldsmith, E.S., Ensor, C.M., Daunert, S., A fluorescence-based sensing system for the environmental monitoring of nickel using the nickel binding protein from Escherichia coli (2002) Anal. Bioanal. Chem., 372, pp. 174-180
Tam, R., Saier, Jr.M.H., Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria (1993) Microbiol. Rev., 57, pp. 320-346
Davidson, A.L., Dassa, E., Orelle, C., Chen, J., Structure, function, and evolution of bacterial ATP-binding cassette systems (2008) Microbiol. Mol. Biol. Rev., 72, pp. 317-364
Dwyer, M.A., Hellinga, H.W., Periplasmic binding proteins: A versatile superfamily for protein engineering (2004) Curr. Opin. Struct. Biol., 14, pp. 495-504
Der, B.S., Dattelbaum, J.D., Construction of a reagentless glucose biosensor using molecular exciton luminescence (2008) Anal. Biochem., 375, pp. 132-140
Deuschle, K., Okumoto, S., Fehr, M., Looger, L.L., Koszhukh, L., Frommer, W.B., Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering (2005) Protein Sci., 14, pp. 2304-2314
Allert, M., Rizk, S.S., Looger, L.L., Hellinga, H.W., Computational design of receptors for an organophosphate surrogate of the nerve agent soman (2004) Proc. Natl. Acad. Sci. U. S. A., 101, pp. 7907-7912
Looger, L.L., Dwyer, M.A., Smith, J.J., Hellinga, H.W., Computational design of receptor and sensor proteins with novel functions (2003) Nature, 423, pp. 185-190
Lager, I., Looger, L.L., Hilpert, M., Lalonde, S., Frommer, W.B., Conversion of a putative Agrobacterium sugar-binding protein into a FRET sensor with high selectivity for sucrose (2006) J. Biol. Chem., 281, pp. 30875-30883
Vercillo, N.C., Herald, K.J., Fox, J.F., Der, B.S., Dattelbaum, J.D., Analysis of Ligand Binding to a Ribose Biosensor using Site-directed mutagenesis and Fluorescence Spectroscopy (2007) Protein Sci., 16, pp. 362-368
Tian, Y., Cuneo, M.J., Changela, A., Höcker, B., Beese, L.S., Hellinga, H.W., Structure-based design of robust glucose biosensors using a Thermotoga maritima periplasmic glucose-binding protein (2007) Protein Sci., 16, pp. 2240-2250
Gu, H., Lalonde, S., Okumoto, S., Looger, L.L., Scharff-Poulsen, A.M., Grossman, A.R., Kossmann, J., Frommer, W.B., A novel analytical method for in vivo phosphate tracking (2006) FEBS Lett., 580, pp. 5885-5893
Emanuelsson, O., Brunak, S., Von Heijne, G., Nielsen, H., Locating proteins in the cell using TargetP, SignalP, and related tools (2007) Nat. Protocols, 2, pp. 953-971
Lakowicz, J.R., (2006) Principles of Fluorescence Spectroscopy, , Springer, New York, 3 edn
Eftink, M.R., Ghiron, C.A., Dynamics of a protein matrix revealed by fluorescence quenching (1975) Proc. Natl. Acad. Sci. U. S. A., 72, pp. 3290-3294
Schellman, J., Macromolecular binding (1975) Biopolymers, 14, pp. 999-1018
Simpson, H.D., Haufler, U.R., Daniel, R.M., An extremely thermostable xylanase from the thermophilic eubacterium Thermotoga (1991) Biochem. J., 277, pp. 413-417
Sun, Y.-J., Rose, J., Wang, B.-C., Hsiao, C.-D., The Structure of Glutamine-binding Protein complexed with Glutamine at 1.94 A Resolution: Comparisons with other Amino Acid Binding Proteins (1998) J. Mol. Biol., 278, pp. 219-229
Gonin, S., Arnoux, P., Pierrru, B., Lavergne, J., Alonso, B., Sabaty, M., Pignol, D., Crystal structures of an Extracytoplasmic Solute Receptor from a TRAP transporter in its open and closed forms reveal a helix-swapped dimer requiring a cation for alpha-keto acid binding (2007) BMC Struct. Biol., 7, p. 11
Fang, Y., Kolmakova-Partensky, L., Miller, C., A bacterial arginine-agmatine exchange transporter involved in extreme acid resistance (2007) J. Biol. Chem., 282, pp. 176-182
Kyrpides, N.C., Ouzounis, C.A., Iliopoulos, I., Vonstein, V., Overbeek, R., Analysis of the Thermotoga maritima genome combining a variety of sequence similarity and genome context tools (2000) Nucleic Acids Res., 28, pp. 4573-4576
Huber, R., Hanning, M., (2004) Thermotogales, , Springer-Verlag, New York
Conners, S.B., Mongodin, E.F., Johnson, M.R., Montero, C.I., Nelson, K.E., Kelly, R.M., Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species (2006) FEMS Microbiol. Rev., 30, pp. 872-905
Nohno, T., Saito, T., Hong, J.S., Cloning and complete nucleotide sequence of the Escherichia coli glutamine permease operon (glnHPQ) (1986) Mol. Gen. Genet., 205, pp. 260-269
Marcus, M., Halpern, Y.S., Genetic analysis of the glutamate permease in Escherichia coli K-12 (1969) J. Bacteriol., 97, pp. 1118-1128
Marin, K., Kramer, R., (2007) Amino Acid Biosynthesis, , ed., V. F. Wendisch, Springer-Verlag, Berlin
Wissenbach, U., Six, S., Bongaerts, J., Ternes, D., Steinwachs, S., Unden, G., A third periplasmic transport system for l-arginine in Escherichia coli: Molecular characterization of the artPIQMJ genes, arginine binding and transport (1995) Mol. Microbiol., 17, pp. 675-686
Ames, G.F., Bacterial periplasmic transport systems: Structure, mechanism, and evolution (1986) Annu. Rev. Biochem., 55, pp. 397-425
Nikaido, K., Ames, G.F., Purification and characterization of the periplasmic lysine-, arginine-, ornithine-binding protein (LAO) from Salmonella typhimurium (1992) J. Biol. Chem., 267, pp. 20706-20712
Fukami-Kobayashi, K., Tateno, Y., Nishikawa, K., Domain dislocation: A change of core structure in periplasmic binding proteins in their evolutionary history (1999) J. Mol. Biol., 286, pp. 279-290
Kashiwagi, K., Shiba, K., Fukami-Kobayashi, K., Noda, T., Nishikawa, K., Noguchi, H., Characterization of folding pathways of the type-1 and type-2 periplasmic binding proteins MglB and ArgT (2003) J. Biochem. (Tokyo), 133, pp. 371-376
Kashiwagi, K., Fukami-Kobayashi, K., Shiba, K., Nishikawa, K., Construction and characterization of chimeric proteins composed of type-1 and type-2 periplasmic binding proteins MglB and ArgT (2004) Biosci., Biotechnol., Biochem., 68, pp. 808-813
Piszczek, G., D'auria, S., Staiano, M., Rossi, M., Ginsburg, A., Conformational stability and domain coupling in D-glucose/D-galactose- binding protein from Escherichia coli (2004) Biochemical Journal, 381 (1), pp. 97-103. , DOI 10.1042/BJ20040232
Vahedi-Faridi, A., Eckey, V., Scheffel, F., Alings, C., Landmesser, H., Schneider, E., Saenger, W., Crystal structures and mutational analysis of the arginine-, lysine-, histidine-binding protein ArtJ from Geobacillus stearothermophilus. Implications for interactions of ArtJ with its cognate ATP-binding cassette transporter, Art(MP)2 (2008) J. Mol. Biol., 375, pp. 448-459
Oh, B.H., Pandit, J., Kang, C.H., Nikaido, K., Gokcen, S., Ames, G.F., Kim, S.H., Three-dimensional structures of the periplasmic lysine/arginine/ ornithine-binding protein with and without a ligand (1993) J. Biol. Chem., 268, pp. 11348-11355
Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., Bairoch, A., Protein identification and analysis tools on the ExPASy server (2005) The Proteomics Protocols Handbook, pp. 571-607. , ed., J. M. Walker, Humana Press, Totowa, NJ
Johnsosson, B., Lofas, S., Lindquist, G., Immobilization of protein to a carboxymethyldextran modified gold surface for biospecific interaction analysis in SPR sensor (1991) Anal. Biochem., 198, pp. 268-277
Fields, G.B., Noble, R.L., Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids (1990) Int. J. Pept. Protein Res., 35, pp. 161-214
Swofford, D., (2002) PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4
Amino acid transport in thermophiles: characterization of an arginine-binding protein in Thermotoga maritima
Members of the periplasmic binding protein superfamily are involved in the selective passage of ligands through bacterial cell membranes. The hyperthermophilic eubacterium Thermotoga maritima was found to encode a highly stable and specific periplasmic arginine-binding protein (TM0593). Following signal sequence removal and overexpression in Escherichia coli, TM0593 was purified by thermoprecipitation and affinity chromatography. The ultra-stable protein with a monomeric molecular weight of 27.7 kDa was found to exist as both a homodimer and homotrimer at appreciable concentrations even under strongly denaturing conditions, with an estimated transition temperature of 116 degrees C. Its multimeric structure may provide further evidence of the importance of quaternary structure in the movement of nutrients across bacterial membranes. Purified and refolded TM0593 was further characterized by fluorescence spectroscopy, mass spectrometry, and circular dichroism to demonstrate the specificity of the protein for arginine and to elucidate structural changes associated with arginine binding. The protein binds arginine with a dissociation constant of 20 mM as determined by surface plasmon resonance measurements. Due to its high thermodynamic stability, TM0593 may serve as a scaffold for the creation of a robust fluorescent biosensor.
Amino acid transport in thermophiles: characterization of an arginine-binding protein in Thermotoga maritima
Ciccarelli M, Sorriento D, Coscioni E, Iaccarino G, Santulli G * Adrenergic Receptors(262 views) Endocrinol Of The Heart In Health And Dis (ISSN: 9780-1280311249780128031117), 2016; N/D: 285-315. Impact Factor:0 ViewExport to BibTeXExport to EndNote
Kim YH, Shin SW, Pellicano R, Fagoonee S, Choi IJ, Kim YI, Park B, Choi JM, Kim SG, Choi J, Park JY, Oh S, Yang HJ, Lim JH, Im JP, Kim JS, Jung HC, Ponzetto A, Figura N, Malfertheiner P, Choi IJ, Kook MC, Kim YI, Cho SJ, Lee JY, Kim CG, Park B, Nam BH, Bae SE, Choi KD, Choe J, Kim SO, Na HK, Choi JY, Ahn JY, Jung KW, Lee J, Kim DH, Chang HS, Song HJ, Lee GH, Jung HY, Seta T, Takahashi Y, Noguchi Y, Shikata S, Sakai T, Sakai K, Yamashita Y, Nakayama T, Leja M, Park JY, Murillo R, Liepniece-karele I, Isajevs S, Kikuste I, Rudzite D, Krike P, Parshutin S, Polaka I, Kirsners A, Santare D, Folkmanis V, Daugule I, Plummer M, Herrero R, Tsukamoto T, Nakagawa M, Kiriyama Y, Toyoda T, Cao X, Corral JE, Mera R, Dye CW, Morgan DR, Lee YC, Lin JT, Garcia Martin R, Matia Cubillo A, Lee SH, Park JM, Han YM, Ko WJ, Hahm KB, Leontiadis GI, Ford AC, Ichinose M, Sugano K, Jeong M, Park JM, Han YM, Park KY, Lee DH, Yoo JH, Cho JY, Hahm KB, Bang CS, Baik GH, Shin IS, Kim JB, Suk KT, Yoon JH, Kim YS, Kim DJ * Helicobacter pylori Eradication for Prevention of Metachronous Recurrence after Endoscopic Resection of Early Gastric Cancer(307 views) N Engl J Med (ISSN: 0028-4793, 0028-4793linking, 1533-4406electronic), 2015 Jun; 30642104201566393291: 749-756. Impact Factor:59.558 ViewExport to BibTeXExport to EndNote