Biochemical and structural properties of gamma-glutamyl transpeptidase from Geobacillus thermodenitrificans: An enzyme specialized in hydrolase activity
Biochemical and structural properties of gamma-glutamyl transpeptidase from Geobacillus thermodenitrificans: An enzyme specialized in hydrolase activity(613 views) Castellano I, Merlino A, Rossi M, La Cara F
CNR, Institute of Protein Biochemistry, Via Pietro Castellino 111, I-80131 Naples, Italy
Department of Chemistry, University of Naples 'Federico II', Via Cinthia, I-80126 Naples, Italy
References: Tate, S.S., Meister, A., Gamma-glutamyl transpeptidase: catalytic, structural and functional aspects (1981) Mol. Cell. Biochem., 39, pp. 357-36
Pompella, A., Corti, A., Paolicchi, A., Giommarelli, C., Zunino, F., Gamma-glutamyltransferase, redox regulation and cancer drug resistance (2007) Curr. Opin. Pharmacol., 7, pp. 360-366
Lee, D.H., Blomhoff, R., Jacobs, D.R., Is serum gamma glutamyltransferase a marker of oxidative stress? (2004) Free Radic. Res., 38, pp. 535-539
Arai, K., Sumi, S.H., Yoshida, K., Komoda, T., A precursor form of human kidney gamma-glutamyl transferase in normal and cancerous tissues, and its possible post-translational modification (1995) Biochim. Biophys. Acta, 1253, pp. 33-38
Yao, D., Jiang, D., Huang, Z., Abnormal expression of hepatoma specific gamma-glutamyl transferase and alteration of gamma-glutamyl transferase gene methylation status in patients with hepatocellular carcinoma (2000) Cancer, 88, pp. 761-769
Schäfer, C., Fels, C., Brucke, M., Gamma-glutamyl transferase expression in higher-grade astrocytic glioma (2001) Acta Oncol., 40, pp. 529-535
Chinta, S.J., Kumar, J.M., Zhang, H., Forman, H.J., Andersen, J.K., Up-regulation of gamma-glutamyl transpeptidase activity following glutathione depletion has a compensatory rather than an inhibitory effect on mitochondrial complex I activity: implications for Parkinson's disease (2006) Free Radic. Biol. Med., 40, pp. 1557-1563
Emdin, M., Pompella, A., Paolicchi, A., Gamma-glutamyltransferase, atherosclerosis, and cardiovascular disease: triggering oxidative stress within the plaque (2005) Circulation, 112, pp. 2130-2137
Pompella, A., De Tata, V., Paolicchi, A., Zunino, F., Expression of gamma-glutamyltransferase in cancer cells and its significance in drug resistance (2006) Biochem. Pharmacol., 71, pp. 231-238
Dufour, D.R., Lott, J.A., Nolte, F.S., Gretch, D.R., Koff, R.S., Seeff, L.B., Diagnosis and monitoring of hepatic injury. I. Performance characteristics of laboratory tests (2001) Clin. Chem., 47, pp. 1133-1135
Marchesini, G., Avagnina, S., Barantani, E.G., Ciccarone, A.M., Aminotransferase and γ-glutamyltranspeptidase levels in obesity are associated with insulin resistance and the metabolic syndrome (2005) J. Endocrinol. Invest., 28, pp. 333-339
Chevalier, C., Thiberge, J.M., Ferrero, R.L., Labigne, A., Essential role of Helicobacter pylori gamma-glutamyltranspeptidase for the colonization of the gastric mucosa of mice (1999) Mol. Microbiol., 31, pp. 1359-1372
McGovern, K.J., Blanchard, T.G., Gutierrez, J.A., Czinn, S.J., Krakowka, S., Youngman, P., Gamma-Glutamyltransferase is a Helicobacter pylori virulence factor but is not essential for colonization (2001) Infect. Immun., 69, pp. 4168-4173
Boanca, G., Sand, A., Barycki, J.J., Uncoupling the enzymatic and autoprocessing activities of Helicobacter pylori gamma-glutamyltranspeptidase (2006) J. Biol. Chem., 281, pp. 19029-19037
Suzuki, H., Kumagai, H., Autocatalytic processing of gamma-glutamyltranspeptidase (2002) J. Biol. Chem., 277, pp. 43536-43543
Kinlough, C.L., Poland, P.A., Bruns, J.B., Hughey, R.P., Gamma-glutamyltranspeptidase: disulfide bridges, propeptide cleavage, and activation in the endoplasmic reticulum (2005) Meth. Enzymol., 401, pp. 426-449. , (Review)
Brannigan, J.A., Dodson, G., Duggleby, H.J., A protein catalytic framework with an N-terminal nucleophile is capable of self-activation (1995) Nature, 78, pp. 416-419
Oinonen, C., Rouvinen, J., Structural comparison of Ntn-hydrolases (2000) Protein Sci., 9, pp. 2329-2337
Okada, T., Suzuki, H., Wada, K., Kumagai, H., Fukuyama, K., Crystal structures of gamma-glutamyltranspeptidase from Escherichia coli, a key enzyme in glutathione metabolism, and its reaction intermediate (2006) Proc. Natl. Acad. Sci. U.S.A., 103, pp. 6471-6476
Wang, L., Tang, Y., Wang, S., Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes (2006) Extremophiles, 10, pp. 347-356
Feng, L., Wang, W., Cheng, J., Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir (2007) Proc. Natl. Acad. Sci. U.S.A., 104, pp. 5602-5607
Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254
Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T 4 (1970) Nature, 227, pp. 680-685
Schwede, T., Kopp, J., Guex, N., Peitsch, M.C., SWISS-MODEL: an automated protein homology-modeling server (2003) Nucleic Acids Res., 31, pp. 3381-3385
Jones, T.A., Bergdoll, M., Kjeldgaard, M., O: a macromolecular modeling environment (1990) Crystallographic and Modeling Methods in Molecular Design, pp. 189-195. , Springer-Verlag Press, C. Bugg, S. Ealick (Eds.)
van der Spoel, D., van Druner, R., Berendsen, H.J.C., (1994) Groningen Machine for Chemical Simulation, , Department of Biophysical Chemistry, BIOSON Research Institute, Groningen, The Netherlands
Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M., PROCHECK: a program to check the stereochemical quality of protein structure (1993) J. Appl. Crystallogr., 26, pp. 283-291
Hooft, R.W., Vriend, G., Sander, C., Abola, E.E., Errors in protein structures (1996) Nature, 381, p. 272
Wiederstein, M., Sippl, M.J., ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins (2007) Nucleic Acids Res., 35, pp. 407-410
Kraulis, P.J., MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures (1991) J. Appl. Crystallogr., 24, pp. 946-950
Willard, L., Ranjan, A., Zhang, H., Monzavi, H., Boyko, R.F., Sykes, B.D., Wishart, D.S., VADAR: a web server for quantitative evaluation of protein structure quality (2003) Nucleic Acids Res., 31, pp. 3316-3319
McDonald, I.K., Thornton, J.M., Satisfying hydrogen bonding potential in proteins (1994) J. Mol. Biol., 238, pp. 777-793
Costantini, S., Colonna, G., Facchiano, A.M., ESBRI: a web server for evaluating salt bridges in proteins (2008) Bioinformation, 3, pp. 137-138
Figlewicz, D.A., Delattre, O., Guellaen, G., Mapping of human gamma-glutamyl transpeptidase genes on chromosome 22 and other human autosomes (1993) Genomics, 17, pp. 299-305
Xu, K., Strauch, M.A., Identification, sequence, and expression of the gene encoding gamma-glutamyltranspeptidase in Bacillus subtilis (1996) J. Bacteriol., 178, pp. 4319-4322
Tomb, J.F., White, O., Kerlavage, A.R., The complete genome sequence of the gastric pathogen Helicobacter pylori (1997) Nature, 388, pp. 539-547
Larkin, M.A., Blackshields, G., Brown, N.P., Clustal W and Clustal X version 2.0 (2007) Bioinformatics, 23, pp. 2947-2948
Hashimoto, W., Suzuki, H., Nohara, S., Tachi, H., Yamamoto, K., Kumagai, H., Subunit association of gamma-glutamyltranspeptidase of Escherichia coli K-12 (1995) J. Biochem., 118, pp. 1216-1223
Williams, K., Cullati, S., Sand, A., Biterova, E.I., Barycki, J.J., Crystal structure of acivicin-inhibited γ-glutamyltranspeptidase reveals critical roles for its C-Terminus in autoprocessing and catalysis (2009) Biochemistry, 48, pp. 2459-2467
Ikeda, Y., Fujii, J., Anderson, M.E., Taniguchi, N., Meister, A., Involvement of Ser-451 and Ser-452 in the catalysis of human gamma-glutamyl transpeptidase (1995) J. Biol. Chem., 270, pp. 22223-22228
Szilagyi, A., Zavodsky, P., Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey (2000) Struct. Fold Des., 8, pp. 493-504
De Vendittis, E., Castellano, I., Cotugno, R., Ruocco, M.R., Raimo, G., Masullo, M., Adaptation of model proteins from cold to hot environments involves continuous and small adjustments of average parameters related to amino acid composition (2008) J. Theor. Biol., 250, pp. 156-171
Nakayama, R., Kumagai, H., Tochikura, T., Purification and properties of gamma-glutamyltranspeptidase from Proteus mirabilis (1984) J. Bacteriol., 160, pp. 341-346
Lin, L.L., Chou, P.R., Hua, Y.W., Hsu, W.H., Overexpression, one-step purification, and biochemical characterization of a recombinant gamma-glutamyltranspeptidase from Bacillus licheniformis (2006) Appl. Microbiol. Biotechnol., 73, pp. 103-112
Suzuki, H., Yamada, C., Kato, K., Gamma-glutamyl compounds and their enzymatic production using bacterial gamma-glutamyltranspeptidase (2007) Amino Acids, 32, pp. 333-340. , (Review)
Minami, H., Suzuki, H., Kumagai, H., A mutant Bacillus subtilis gamma-glutamyltranspeptidase specialized in hydrolysis activity (2003) FEMS Microbiol. Lett., 224, pp. 169-173
Vermeulen, N., Gänzle, M.G., Vogel, R.F., Glutamine deamidation by cereal-associated lactic acid bacteria (2007) J. Appl. Microbiol., 103, pp. 1197-1205
Abe, K., Ito, Y., Ohmachi, T., Asada, Y., Purification and properties of two isozymes of gamma-glutamyltranspeptidase from Bacillus subtilis TAM-4 (1997) Biosci. Biotechnol. Biochem., 61, pp. 1621-1625
Lyu, R.C., Hu, H.Y., Kuo, L.Y., Role of the conserved Thr399 and Thr417 residues of Bacillus licheniformis γ-glutamyltranspeptidase as evaluated by mutational analysis (2009) Curr. Microbiol., 59, pp. 101-106
Khan, J.A., Dunn, B.M., Tong, L., Crystal structure of human taspase1, a crucial protease regulating the function of MLL (2005) Structure, 13, pp. 1443-1452
Suzuki, H., Miwa, C., Ishihara, S., Kumagai, H., A single amino acid substitution converts gamma-glutamyltranspeptidase to a class IV cephalosporin acylase (glutaryl-7-aminocephalosporanic acid acylase) (2004) Appl. Environ. Microbiol., 70, pp. 6324-6328
Yamada, C., Kijima, K., Ishihara, S., Improvement of the glutaryl-7-aminocephalosporanic acid acylase activity of a bacterial gamma-glutamyltranspeptidase (2008) Appl. Environ. Microbiol., 74, pp. 3400-3409
Tate, S. S., Meister, A., Gamma-glutamyl transpeptidase: catalytic, structural and functional aspects (1981) Mol. Cell. Biochem., 39, pp. 357-36
Lee, D. H., Blomhoff, R., Jacobs, D. R., Is serum gamma glutamyltransferase a marker of oxidative stress? (2004) Free Radic. Res., 38, pp. 535-539
Arai, K., Sumi, S. H., Yoshida, K., Komoda, T., A precursor form of human kidney gamma-glutamyl transferase in normal and cancerous tissues, and its possible post-translational modification (1995) Biochim. Biophys. Acta, 1253, pp. 33-38
Sch fer, C., Fels, C., Brucke, M., Gamma-glutamyl transferase expression in higher-grade astrocytic glioma (2001) Acta Oncol., 40, pp. 529-535
Chinta, S. J., Kumar, J. M., Zhang, H., Forman, H. J., Andersen, J. K., Up-regulation of gamma-glutamyl transpeptidase activity following glutathione depletion has a compensatory rather than an inhibitory effect on mitochondrial complex I activity: implications for Parkinson's disease (2006) Free Radic. Biol. Med., 40, pp. 1557-1563
Dufour, D. R., Lott, J. A., Nolte, F. S., Gretch, D. R., Koff, R. S., Seeff, L. B., Diagnosis and monitoring of hepatic injury. I. Performance characteristics of laboratory tests (2001) Clin. Chem., 47, pp. 1133-1135
McGovern, K. J., Blanchard, T. G., Gutierrez, J. A., Czinn, S. J., Krakowka, S., Youngman, P., Gamma-Glutamyltransferase is a Helicobacter pylori virulence factor but is not essential for colonization (2001) Infect. Immun., 69, pp. 4168-4173
Kinlough, C. L., Poland, P. A., Bruns, J. B., Hughey, R. P., Gamma-glutamyltranspeptidase: disulfide bridges, propeptide cleavage, and activation in the endoplasmic reticulum (2005) Meth. Enzymol., 401, pp. 426-449. , (Review)
Brannigan, J. A., Dodson, G., Duggleby, H. J., A protein catalytic framework with an N-terminal nucleophile is capable of self-activation (1995) Nature, 78, pp. 416-419
Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254
Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T 4 (1970) Nature, 227, pp. 680-685
Jones, T. A., Bergdoll, M., Kjeldgaard, M., O: a macromolecular modeling environment (1990) Crystallographic and Modeling Methods in Molecular Design, pp. 189-195. , Springer-Verlag Press, C. Bugg, S. Ealick (Eds.)
Laskowski, R. A., MacArthur, M. W., Moss, D. S., Thornton, J. M., PROCHECK: a program to check the stereochemical quality of protein structure (1993) J. Appl. Crystallogr., 26, pp. 283-291
Hooft, R. W., Vriend, G., Sander, C., Abola, E. E., Errors in protein structures (1996) Nature, 381, p. 272
Kraulis, P. J., MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures (1991) J. Appl. Crystallogr., 24, pp. 946-950
McDonald, I. K., Thornton, J. M., Satisfying hydrogen bonding potential in proteins (1994) J. Mol. Biol., 238, pp. 777-793
Figlewicz, D. A., Delattre, O., Guellaen, G., Mapping of human gamma-glutamyl transpeptidase genes on chromosome 22 and other human autosomes (1993) Genomics, 17, pp. 299-305
Tomb, J. F., White, O., Kerlavage, A. R., The complete genome sequence of the gastric pathogen Helicobacter pylori (1997) Nature, 388, pp. 539-547
Larkin, M. A., Blackshields, G., Brown, N. P., Clustal W and Clustal X version 2. 0 (2007) Bioinformatics, 23, pp. 2947-2948
Lin, L. L., Chou, P. R., Hua, Y. W., Hsu, W. H., Overexpression, one-step purification, and biochemical characterization of a recombinant gamma-glutamyltranspeptidase from Bacillus licheniformis (2006) Appl. Microbiol. Biotechnol., 73, pp. 103-112
Vermeulen, N., G nzle, M. G., Vogel, R. F., Glutamine deamidation by cereal-associated lactic acid bacteria (2007) J. Appl. Microbiol., 103, pp. 1197-1205
Lyu, R. C., Hu, H. Y., Kuo, L. Y., Role of the conserved Thr399 and Thr417 residues of Bacillus licheniformis -glutamyltranspeptidase as evaluated by mutational analysis (2009) Curr. Microbiol., 59, pp. 101-106
Khan, J. A., Dunn, B. M., Tong, L., Crystal structure of human taspase1, a crucial protease regulating the function of MLL (2005) Structure, 13, pp. 1443-1452
Biochemical and structural properties of gamma-glutamyl transpeptidase from Geobacillus thermodenitrificans: An enzyme specialized in hydrolase activity
Gamma-glutamyltranspeptidases (gamma-GTs) catalyze the transfer of the gamma-glutamyl moiety of glutathione and related gamma-glutamyl amides to water (hydrolysis) or to amino acids and peptides (transpeptidation) and play a key role in glutathione metabolism. Recently, gamma-GTs have been considered attractive pharmaceutical targets for cancer and useful tools to produce gamma-glutamyl compounds. To find out gamma-GTs with special properties we have chosen microorganisms belonging to Geobacillus species which are source of several thermostable enzymes of potential interest for biotechnology. gamma-GT from Geobacillus thermodenitrificans (GthGT) was cloned, expressed in Escherichia coli, purified to homogeneity and characterized. The enzyme, synthesized as a precursor homotetrameric protein of 61-kDa per subunit, undergoes an internal post-translational cleavage of the 61 kDa monomer into 40- and 21-kDa shorter subunits, which are then assembled into an active heterotetramer composed of two 40- and two 21-kDa subunits. The kinetic characterization of the hydrolysis reaction using L-glutamic acid gamma-(4-nitroanilide) as the substrate reveals that the active enzyme has K-m 7.6 mu M and V-max 0.36 mu mol min/mg. The optimum pH and temperature for the hydrolysis activity are 7.8 and 52 degrees C. respectively. GthGT hydrolyses the physiological antioxidant glutathione, suggesting an involvement of the enzyme in the cellular defense mechanism against oxidative stress. Unlike other gamma-GTs, the mutation of the highly conserved catalytic nucleophile, Thr353, abolishes the post-translational cleavage of the pro-enzyme, but does not completely block the hydrolytic action. Furthermore, GthGT does not show any transpeptidase activity, suggesting that the enzyme is a specialized gamma-glutamyl hydrolase. The GthGT homology-model structure reveals peculiar structural features, which should be responsible for the different functional properties of the enzyme and suggests the structural bases of protein thermostability. (C) 2010 Elsevier Masson SAS. All rights reserved.
Biochemical and structural properties of gamma-glutamyl transpeptidase from Geobacillus thermodenitrificans: An enzyme specialized in hydrolase activity
No results.
Biochemical and structural properties of gamma-glutamyl transpeptidase from Geobacillus thermodenitrificans: An enzyme specialized in hydrolase activity