Department of Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, Naples, 80125, Italy
Interdisciplinary Research Centre on Biomaterials (CRIB), Italian Institute of Technology, IIT, Piazzale Tecchio 80, Naples, 80125, Italy
Department of Biological Science, section Biostructures, University of Naples Federico II, via Mezzocannone 16, Naples, 80134, Italy
References: Cukierman, E., Pankov, R., Yamada, K.M., Cell interactions with three-dimensional matrices (2002) Curr Opin Cell Biol, 14, pp. 633-63
Kleinman, H.K., Ohilp, D., Hoffman, M.P., Role of the extracellular matrix in morphogenesis (2003) Curr Opin Biotechnol, 14, pp. 526-532
Schmeichel, K.L., Bissell, M.J., Modeling tissue-specific signalling and organ function in three dimensions (2003) J Cell Sci, 116, pp. 2377-2388
Peppas, N.A., Langer, R., New challenge in biomaterials (1994) Science, 263, pp. 1715-1720
Hubbell, J.A., Biomaterials in tissue engineering (1995) Biotechnology, 13 (6), pp. 565-576
Langer, R., Tirrell, D.A., Designing materials for biology and medicine (2004) Nature, 428, pp. 487-492
Lutolf, M.P., Hubbell, J.A., Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering (2005) Nat Biotechnol, 23, pp. 47-55
Hubbell, J.A., Matrix bound growth factors in tissue repair (2006) Swiss Med Wkly, 136, pp. 387-391
Savarino, L., Baldini, N., Greco, M., Capitani, O., Pinna, S., Valentini, S., The performance of poly-epsiloncaprolacton scaffolds in a rabbit femur model with and without autologous stromal cells and BMP4 (2007) Biomaterials, 28, pp. 3101-3109
Shen, H., Tan, J., Saltzman, W.M., Surface-mediated gene transfer from nanocomposites of controlled texture (2004) Nat Mater, 3, pp. 569-574
Panyam, J., Zhou, W., Prabha, S., Sahoo, S.K., Labhasetwar, V., Rapid endo-lysosomal escape of poly(dl-lactide-co-glycolide) nanoparticles: implication for drug and gene delivery (2002) FASEB J, 16, pp. 1217-1226
Pannier, A.K., Shea, L.D., Controlled release systems for DNA delivery (2004) Mol Ther, 10 (1), pp. 19-24
Fang, J., Zhu, Y.Y., Bonadio, J., Rouleau, J., Goldstein, S., McCauley, L.K., Stimulation of new bone formation by direct transfer of osteogenic plasmid genes (1996) Proc Natl Acad Sci U S A, 93, pp. 5753-5759
Bonadio, J., Smiley, E., Patil, P., Goldstein, S., Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration (1999) Nat Med, 5, pp. 753-759
Bonadio, J., Goldstein, S.A., Levy, R.S., Gene therapy for tissue repair and regeneration (1998) Adv Drug Deliv Rev, 33, pp. 53-69
Shea, L.D., Smiley, E., Bonadio, J., Mooney, D.J., DNA delivery from polymer matrices for tissue engineering (1999) Nat Biotechnol, 17 (6), pp. 551-554
Bonadio, J., Tissue engineering via local gene delivery: Update and future prospects for enhancing the technology (2000) Adv Drug Deliv Rev, 44, pp. 185-194
Endo, M., Kuroda, S., Kondo, H., Maruoka, Y., Ohya, K., Kasugai, S., Bone regeneration by modified gene-activated matrix: effectiveness in segmental tibial defects in rats (2006) Tissue Eng, 12 (3), pp. 489-497
Chandler, L.A., Gu, D.L., Ma, C., Gonzalez, A.M., Doukas, J., Nguyen, T., Matrix-enabled gene transfer for cutaneous wound repair (2000) Wound Repair Regen, 8 (6), pp. 473-479
Segura, T., Chung, P.H., Shea, L.D., DNA delivery from hyaluronic acid-collagen hydrogels via a substrate-mediated approach (2005) Biomaterials, 26, pp. 1575-1584
Lau, Y.K., Gobin, A.M., West, J.L., Overexpression of lysyl oxidase to increase matrix crosslinking and improve tissue strength in dermal wound healing (2006) Ann Biomed Eng, 34, pp. 1239-1246
Peng, L., Cheng, X., Zhuo, R., Lan, J., Wang, Y., Shi, B., Novel gene-activated matrix with embedded chitosan/plasmid DNA nanoparticles encoding PDGF for periodontal tissue engineering (2009) J Biomed Mater Res A, 90 (2), pp. 564-576
Cao, L., Mooney, D.J., Spatiotemporal control over growth factor signaling for therapeutic neovascularization (2007) Adv Drug Deliv Rev, 59 (13), pp. 1340-1350
DeLong, S.A., Gobin, A.S., West, J.L., Covalent immobilization of RGDS on hydrogel surfaces to direct cell alignment and migration (2005) J Control Release, 109 (1-3), pp. 139-148
DeLong, S.A., Moon, J.J., West, J.L., Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration (2005) Biomaterials, 26, pp. 3227-3234
Boyden, S., The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes (1962) J Exp Med, 115, pp. 453-466
Nelson, R.D., Quie, P.G., Simmons, R.L., Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leucocytes and monocytes (1975) J Immunol, 115, pp. 1650-1656
Moghe, P.V., Nelson, R.D., Tranquillo, R.T., Cytokine-stimulated chemotaxis of human neutrophils in a 3-D conjoined fibrin gel assay (1995) J Immunol Methods, 180, pp. 193-211
Knapp, D.M., Helou, E.F., Tranquillo, R.T., A fibrin or collagen gel assay for tissue cell chemotaxis: assessment of fibroblast chemotaxis to RGDSP (1999) Exp Cell Res, 247, pp. 543-553
Kipper, M.J., Kleinman, H.K., Wang, F.W., New method for modeling connective-tissue cell migration: improved accuracy on motility parameters (2007) Biophys J, 93 (5), pp. 1797-1808
Maheshwari, G., Lauffenburger, D.A., Deconstructing (and reconstructing) cell migration (1998) Microsc Res Tech, 43, pp. 358-368
Distasi, C., Ariano, P., Zamburlin, P., Ferraro, M., In vitro analysis of neuron-glial cell interactions during cellular migration (2002) Eur Biophys J, 31, pp. 81-88
Smith, J.T., Tomfohr, J.K., Wells, M.C., Beebe, T.P., Kepler, T.B., Reichert, W.M., Measurement of cell migration on surface-bound fibronectin gradients (2004) Langmuir, 20, pp. 8279-8286
Myles, J.L., Burgess, B.T., Dickinson, R.B., Modification of the adhesive properties of collagen by covalent grafting with RGD peptides (2000) J Biomater Sci Polym Ed, 11, pp. 69-86
De Rosa, E., Urciuolo, F., Borselli, C., Gerbasio, D., Imparato, G., Netti, P.A., Time and space evolution of transport properties in agarose-chondrocyte constructs (2006) Tissue Eng, 12, pp. 2193-2201
Stokes, C.L., Lauffenburger, D.A., Williams, S.K., Migration of individual microvessel endothelial cells: stochastic model and parameter measurement (1991) J Cell Sci, 99, pp. 419-430
Jang, J.H., Houchin, T.L., Shea, L.D., Gene delivery from polymeric scaffolds for tissue engineering (2004) Expert Rev Med Devices, 1 (1), pp. 127-138
Nishimura, I., Garrell, R., Hedrick, M., Iida, K., Osher, S., Wu, B., Precursor tissue analogs as a tissue-engineering strategy (2003) Tissue Eng, 9 (1), pp. 77-89
Tranquillo, R.T., Self-organization of tissue-equivalents: the nature and role of contact guidance (1999) Biochem Soc Symp, 65, pp. 27-47
Segura, T., Volk, M.J., Shea, L.D., Substrate-mediated DNA delivery: role of the cationic polymer structure and extent of modification (2003) J Control Release, 93 (1), pp. 69-84
Hagstrom, J.E., Self-assembling complexes for in vivo gene delivery (2000) Curr Opin Mol Ther, 2 (2), pp. 143-149
Schaffer, D.V., Fidelman, N.A., Dan, N., Lauffenberger, D.A., Vector unpacking as a potential barrier for receptor-mediated polyplex gene delivery (2000) Biotechnol Bioeng, 67 (5), pp. 598-606
Kleinman, H. K., Ohilp, D., Hoffman, M. P., Role of the extracellular matrix in morphogenesis (2003) Curr Opin Biotechnol, 14, pp. 526-532
Schmeichel, K. L., Bissell, M. J., Modeling tissue-specific signalling and organ function in three dimensions (2003) J Cell Sci, 116, pp. 2377-2388
Peppas, N. A., Langer, R., New challenge in biomaterials (1994) Science, 263, pp. 1715-1720
Hubbell, J. A., Biomaterials in tissue engineering (1995) Biotechnology, 13 (6), pp. 565-576
Lutolf, M. P., Hubbell, J. A., Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering (2005) Nat Biotechnol, 23, pp. 47-55
Hubbell, J. A., Matrix bound growth factors in tissue repair (2006) Swiss Med Wkly, 136, pp. 387-391
Pannier, A. K., Shea, L. D., Controlled release systems for DNA delivery (2004) Mol Ther, 10 (1), pp. 19-24
Fang, J., Zhu, Y. Y., Bonadio, J., Rouleau, J., Goldstein, S., McCauley, L. K., Stimulation of new bone formation by direct transfer of osteogenic plasmid genes (1996) Proc Natl Acad Sci U S A, 93, pp. 5753-5759
Shea, L. D., Smiley, E., Bonadio, J., Mooney, D. J., DNA delivery from polymer matrices for tissue engineering (1999) Nat Biotechnol, 17 (6), pp. 551-554
Chandler, L. A., Gu, D. L., Ma, C., Gonzalez, A. M., Doukas, J., Nguyen, T., Matrix-enabled gene transfer for cutaneous wound repair (2000) Wound Repair Regen, 8 (6), pp. 473-479
Lau, Y. K., Gobin, A. M., West, J. L., Overexpression of lysyl oxidase to increase matrix crosslinking and improve tissue strength in dermal wound healing (2006) Ann Biomed Eng, 34, pp. 1239-1246
DeLong, S. A., Gobin, A. S., West, J. L., Covalent immobilization of RGDS on hydrogel surfaces to direct cell alignment and migration (2005) J Control Release, 109 (1-3), pp. 139-148
DeLong, S. A., Moon, J. J., West, J. L., Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration (2005) Biomaterials, 26, pp. 3227-3234
Nelson, R. D., Quie, P. G., Simmons, R. L., Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leucocytes and monocytes (1975) J Immunol, 115, pp. 1650-1656
Moghe, P. V., Nelson, R. D., Tranquillo, R. T., Cytokine-stimulated chemotaxis of human neutrophils in a 3-D conjoined fibrin gel assay (1995) J Immunol Methods, 180, pp. 193-211
Knapp, D. M., Helou, E. F., Tranquillo, R. T., A fibrin or collagen gel assay for tissue cell chemotaxis: assessment of fibroblast chemotaxis to RGDSP (1999) Exp Cell Res, 247, pp. 543-553
Kipper, M. J., Kleinman, H. K., Wang, F. W., New method for modeling connective-tissue cell migration: improved accuracy on motility parameters (2007) Biophys J, 93 (5), pp. 1797-1808
Smith, J. T., Tomfohr, J. K., Wells, M. C., Beebe, T. P., Kepler, T. B., Reichert, W. M., Measurement of cell migration on surface-bound fibronectin gradients (2004) Langmuir, 20, pp. 8279-8286
Myles, J. L., Burgess, B. T., Dickinson, R. B., Modification of the adhesive properties of collagen by covalent grafting with RGD peptides (2000) J Biomater Sci Polym Ed, 11, pp. 69-86
Stokes, C. L., Lauffenburger, D. A., Williams, S. K., Migration of individual microvessel endothelial cells: stochastic model and parameter measurement (1991) J Cell Sci, 99, pp. 419-430
Jang, J. H., Houchin, T. L., Shea, L. D., Gene delivery from polymeric scaffolds for tissue engineering (2004) Expert Rev Med Devices, 1 (1), pp. 127-138
Tranquillo, R. T., Self-organization of tissue-equivalents: the nature and role of contact guidance (1999) Biochem Soc Symp, 65, pp. 27-47
Hagstrom, J. E., Self-assembling complexes for in vivo gene delivery (2000) Curr Opin Mol Ther, 2 (2), pp. 143-149
Schaffer, D. V., Fidelman, N. A., Dan, N., Lauffenberger, D. A., Vector unpacking as a potential barrier for receptor-mediated polyplex gene delivery (2000) Biotechnol Bioeng, 67 (5), pp. 598-606
Cell recruitment and transfection in gene activated collagen matrix
Realization of systems able to both recruit cells and influence their fate (affecting their processes) represents a new approach for tissue regeneration. We investigated the potency of gene activated matrix (CAM) and implemented the CAM strategy in order to achieve a control of gene expression, as well as a specific cell recruitment. To this aim we developed a 3D DNA bio-activated collagen matrix by Poly (ethylenimine) (PEI)/DNA complex immobilization in the matrix through biotin/avidin bond. Moreover, we realised a serum based chemotactic gradient within the matrix in order to directionally attract NIH3T3 cells. In this system, cells are recruited and forced to migrate through the matrix where they find the bound PEI/DNA complexes and are transfected. The transfected cells can act as local in vivo bioreactors, secreting plasmid encoded proteins that augment tissue repair and regeneration. 3D cell migration and cell transfection were monitored through time-lapse video microscopy and fluorescence microscopy. Cell transfection was also quantified through FACS analysis. Results show that our engineered matrix is able to recruit external cells and transfect them once internalized, therefore it could help in tissue repairing strategy. (C) 2009 Elsevier Ltd. All rights reserved.
Cell recruitment and transfection in gene activated collagen matrix
No results.
Cell recruitment and transfection in gene activated collagen matrix
Petraglia F, Singh AA, Carafa V, Nebbioso A, Conte M, Scisciola L, Valente S, Baldi A, Mandoli A, Petrizzi VB, Ingenito C, De Falco S, Cicatiello V, Apicella I, Janssen-megens EM, Kim B, Yi G, Logie C, Heath S, Ruvo M, Wierenga ATJ, Flicek P, Yaspo ML, Della Valle V, Bernard O, Tomassi S, Novellino E, Feoli A, Sbardella G, Gut I, Vellenga E, Stunnenberg HG, Mai A, Martens JHA, Altucci L * Combined HAT/EZH2 modulation leads to cancer-selective cell death(284 views) Oncotarget (ISSN: 1949-2553electronic, 1949-2553linking), 2018 May 22; 9(39): 25630-25646. Impact Factor:5.008 ViewExport to BibTeXExport to EndNote