Covalently immobilized RGD gradient on PEG hydrogel scaffold influences cell migration parameters(656 views) Guarnieri D, De Capua A, Ventre M, Borzacchiello A, Pedone C, Marasco D, Ruvo M, Netti PA
Interdisciplinary Research Centre on Biomaterials (CRIB), Naples, Italy.
Institute for Biomedical and Composite Materials, CNR, Naples 80125, Italy
Institute of Biostructures and Bioimages, CNR, University of Naples Federico II, Naples 80134, Italy
Department of Biological Science, Section Biostructures, University of Naples Federico II, via Mezzocannone 16, 80134 Naples, Italy
References: Lutolf, M.P., Hubbell, J.A., Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering (2005) Nat. Biotechnol., 23 (1), pp. 47-55. , Revie
Sands, R.W., Mooney, D.J., Polymers to direct cell fate by controlling the microenvironment (2007) Curr. Opin. Biotechnol., 18 (5), pp. 448-453. , Review
Cao, L., Mooney, D.J., Spatiotemporal control over growth factor signaling for therapeutic neovascularization (2007) Adv. Drug Deliv. Rev., 59 (13), pp. 1340-1350. , Review
Plummer, S.T., Wang, Q., Bohn, P.W., Stockton, R., Schwartz, M.A., Electrochemically derived gradients of the extracellular matrix protein fibronectin on gold (2003) Langmuir, 19, pp. 7528-7536
Singhvi, R., Kumar, A., Lopez, G.P., Stephanopoulous, G.N., Wang, D.I., Whitesides, G.M., Engineering cell shape and function (1994) Science, 264, pp. 696-698
Mrksich, M., A surface chemistry approach to studying cell adhesion (2000) Chem. Soc. Rev., 29, pp. 267-273
Chen, G., Ito, Y., Gradient micropattern immobilization of EGF to investigate the effect of artificial juxtacrine stimulation (2001) Biomaterials, 22, pp. 2453-2457
Ito, Y., Hayashi, M., Imanish, Y., Gradient micropattern immobilization of heparin and its interaction with cells (2001) J. Biomater. Sci. Polym. Ed., 12, pp. 367-378
Zhu, B., Eurell, T., Gunawan, R., Leckband, D., Chain-length dependence of the protein and cell resistance of oligo (ethylene glycol)-terminated self-assembled monolayers on gold (2001) J. Biomed. Mater. Res., 56 (3), pp. 406-416
Adams, D.N., Kao, E.Y.C., Hypolite, C.L., Distefano, M.D., Hu, W.S., Letourneau, P.C., Growth cones turn and migrate up an immobilized gradient of the laminin IKVAV peptide (2005) J. Neurobiol., 62, pp. 134-147
Kang, C.E., Gemeinhart, E.J., Gemeinhart, R.A., Cellular alignment by grafted adhesion peptide surface density gradients (2004) J. Biomed. Mater. Res. A, 71, pp. 403-411
Bhangale, S.M., Tjong, V., Wu, L., Yakovlev, N., Moran, P.M., Biologically active protein gradients via microstamping (2005) Adv. Mater., 17, pp. 809-813
Jeon, N.L., Dertinger, S.K.W., Chiu, D.T., Choi, I.S., Stroock, A.D., Whitesides, G.M., Generation of solution and surface gradients using microfluidic systems (2000) Langmuir, 16, pp. 8311-8316
Burdick, J.A., Khademhosseini, A., Langer, R., Fabrication of gradient hydrogels using a microfluidics/ photopolymerization process (2004) Langmuir, 20 (13), pp. 5153-5156
Boyden, S., The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes (1962) J. Exp. Med., 115, pp. 453-466
Nelson, R.D., Quie, P.G., Simmons, R.L., Chemotaxis under agarose: A new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leucocytes and monocytes (1975) J. Immunol., 115, pp. 1650-1656
Moghe, P.V., Nelson, R.D., Tranquillo, R.T., Cytokine-stimulated chemotaxis of human neutrophils in a 3-D conjoined fibrin gel assay (1995) J. Immunol. Methods, 180, pp. 193-211
Knapp, D.M., Helou, E.F., Tranquillo, R.T., A fibrin or collagen gel assay for tissue cell chemotaxis: Assessment of fibroblast chemotaxis to RGDSP (1999) Exp. Cell. Res., 247, pp. 543-553
Smith, J.T., Tomfohr, J.K., Wells, M.C., Beebe, T.P., Kepler, T.B., Reichert, W.M., Measurement of cell migration on surface-bound fibronectin gradients (2004) Langmuir, 20, pp. 8279-8286
De Long, S.A., Moon, J.J., West, J.L., Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration (2005) Biomaterials, 26 (16), pp. 3227-3234
De Long, S.A., Gobin, A.S., West, J.L., Covalent immobilization of RGDS on hydrogel surfaces to direct cell alignment and migration (2005) Journal of Controlled Release, 109, pp. 139-148
Smith, J.T., Elkin, J.T., Reichert, W.M., Directed cell migration on fibronectin gradients: Effect of gradient slope (2006) Exp. Cell. Res., 312 (13), pp. 2424-2432
Brandley, B.K., Schnaar, R.L., Tumor cell haptotaxis on covalently immobilized linear and exponential gradients of a cell adhesion peptide (1989) Dev. Biol., 135 (1), pp. 74-86
Mosesson, M.W., Siebenlist, K.R., Meh, D.A., The structure and biological features of fibrinogen and fibrin (2001) Ann. N.Y. Acad. Sci., 936, pp. 11-30
Van Hinsbergh, V.W., Collen, A., Koolwijk, P., Role of the fibrin matrix in angiogenesis (2001) Ann. N.Y. Acad. Sci., 936, pp. 426-437
Elbert, D.L., Hubbell, J.A., Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering (2001) Biomacromolecules, 2 (2), pp. 430-441
Bryant, S.J., Nicodemus, G.D., Villanueva, I., Designing 3D photopolymer hydrogels to regulate biomechanical cues and tissue growth for cartilage tissue engineering (2008) Pharm. Res., 25 (10), pp. 2379-2386
Hern, D.L., Hubbell, J.A., Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing (1998) J. Biomed. Mater. Res., 39, pp. 266-276
Stokes, C.L., Lauffenburger, D.A., Williams, S.K., Migration of individual microvessel endothelial cells: Stochastic model and parameter measurement (1991) J. Cell. Sci., 99, pp. 419-430
Tranquillo, R.T., Chemotactic movement of single cells (1991) ASGSB Bull., 4 (2), pp. 75-85. , Review
Sarvestani, A.S., Jabbari, E., Analysis of cell locomotion on ligand gradient substrates (2009) Biotechnol. Bioeng., 103, pp. 424-429
Fields, G.B., Noble, R.L., Solid phase peptide synthesis utilizing 9-fluorenylmethoxy-carbonil amino acids (1990) Int. J. Pept. Protein Res., 35, pp. 161-214
Dickinson, R.B., Tranquillo, R.T., Optimal estimation of cell movement indices from the statistical analysis of cell tracking data (1993) AIChE J., 39, pp. 1995-2010
Walmod, P.S., Hartmann-Petersen, R., Berezin, A., Prag, S., Kiselyov, V.V., Berezin, V., Evaluation of individual-cell motility (2001) Methods Mol. Biol., 161, pp. 59-83
Mann, B.K., Gobin, A.S., Tsai, A.T., Schmedlen, R.H., West, J.L., Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: Synthetic ECM analogs for tissue engineering (2001) Biomaterials, 22, pp. 3045-3051
Massia, S.P., Hubbell, J.A., An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3 mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation (1991) J. Cell. Biol., 114 (5), pp. 1089-1100
Irvine, D.J., Hue, K.A., Mayes, A.M., Griffith, L.G., Simulations of cell-surface integrin binding to nanoscale-clustered adhesion ligands (2002) Biophys. J., 82, pp. 120-132
Dunn, G.A., Characterising a kinesis response: Time averaged measures of cell speed and directional persistence (1983) Agents Actions Suppl., 12, pp. 14-33
Codling, E.A., Plank, M.J., Benhamou, S., Random walk models in biology (2008) J. R Soc. Interface, 5, pp. 813-834
Di Milla, P.A., Barbee, K., Lauffenburger, D.A., Mathematical model for the effects of adhesion and mechanics on cell migration speed (1991) Biophys. J., 60 (1), pp. 15-37
Distasi, C., Ariano, P., Zamburlin, P., Ferraro, M., In vitro analysis of neuron-glial cell interactions during cellular migration (2002) Eur. Biophys. J., 31, pp. 81-88
Lutolf, M. P., Hubbell, J. A., Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering (2005) Nat. Biotechnol., 23 (1), pp. 47-55. , Revie
Sands, R. W., Mooney, D. J., Polymers to direct cell fate by controlling the microenvironment (2007) Curr. Opin. Biotechnol., 18 (5), pp. 448-453. , Review
Plummer, S. T., Wang, Q., Bohn, P. W., Stockton, R., Schwartz, M. A., Electrochemically derived gradients of the extracellular matrix protein fibronectin on gold (2003) Langmuir, 19, pp. 7528-7536
Adams, D. N., Kao, E. Y. C., Hypolite, C. L., Distefano, M. D., Hu, W. S., Letourneau, P. C., Growth cones turn and migrate up an immobilized gradient of the laminin IKVAV peptide (2005) J. Neurobiol., 62, pp. 134-147
Kang, C. E., Gemeinhart, E. J., Gemeinhart, R. A., Cellular alignment by grafted adhesion peptide surface density gradients (2004) J. Biomed. Mater. Res. A, 71, pp. 403-411
Bhangale, S. M., Tjong, V., Wu, L., Yakovlev, N., Moran, P. M., Biologically active protein gradients via microstamping (2005) Adv. Mater., 17, pp. 809-813
Jeon, N. L., Dertinger, S. K. W., Chiu, D. T., Choi, I. S., Stroock, A. D., Whitesides, G. M., Generation of solution and surface gradients using microfluidic systems (2000) Langmuir, 16, pp. 8311-8316
Burdick, J. A., Khademhosseini, A., Langer, R., Fabrication of gradient hydrogels using a microfluidics/ photopolymerization process (2004) Langmuir, 20 (13), pp. 5153-5156
Nelson, R. D., Quie, P. G., Simmons, R. L., Chemotaxis under agarose: A new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leucocytes and monocytes (1975) J. Immunol., 115, pp. 1650-1656
Moghe, P. V., Nelson, R. D., Tranquillo, R. T., Cytokine-stimulated chemotaxis of human neutrophils in a 3-D conjoined fibrin gel assay (1995) J. Immunol. Methods, 180, pp. 193-211
Knapp, D. M., Helou, E. F., Tranquillo, R. T., A fibrin or collagen gel assay for tissue cell chemotaxis: Assessment of fibroblast chemotaxis to RGDSP (1999) Exp. Cell. Res., 247, pp. 543-553
Smith, J. T., Tomfohr, J. K., Wells, M. C., Beebe, T. P., Kepler, T. B., Reichert, W. M., Measurement of cell migration on surface-bound fibronectin gradients (2004) Langmuir, 20, pp. 8279-8286
De Long, S. A., Moon, J. J., West, J. L., Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration (2005) Biomaterials, 26 (16), pp. 3227-3234
De Long, S. A., Gobin, A. S., West, J. L., Covalent immobilization of RGDS on hydrogel surfaces to direct cell alignment and migration (2005) Journal of Controlled Release, 109, pp. 139-148
Smith, J. T., Elkin, J. T., Reichert, W. M., Directed cell migration on fibronectin gradients: Effect of gradient slope (2006) Exp. Cell. Res., 312 (13), pp. 2424-2432
Kipper, M. J., Kleinman, H. K., Wang, F. W., Covalent surface chemistry gradients for presenting bioactive peptides (2007) Anal. Biochem., 363 (2), pp. 175-184
Brandley, B. K., Schnaar, R. L., Tumor cell haptotaxis on covalently immobilized linear and exponential gradients of a cell adhesion peptide (1989) Dev. Biol., 135 (1), pp. 74-86
Mosesson, M. W., Siebenlist, K. R., Meh, D. A., The structure and biological features of fibrinogen and fibrin (2001) Ann. N. Y. Acad. Sci., 936, pp. 11-30
Van Hinsbergh, V. W., Collen, A., Koolwijk, P., Role of the fibrin matrix in angiogenesis (2001) Ann. N. Y. Acad. Sci., 936, pp. 426-437
Hubbell, J. A., Bioactive biomaterials (1999) Curr. Opin. Biotechnol., 10 (2), pp. 123-129. , Review
Elbert, D. L., Hubbell, J. A., Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering (2001) Biomacromolecules, 2 (2), pp. 430-441
Bryant, S. J., Nicodemus, G. D., Villanueva, I., Designing 3D photopolymer hydrogels to regulate biomechanical cues and tissue growth for cartilage tissue engineering (2008) Pharm. Res., 25 (10), pp. 2379-2386
Hern, D. L., Hubbell, J. A., Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing (1998) J. Biomed. Mater. Res., 39, pp. 266-276
Stokes, C. L., Lauffenburger, D. A., Williams, S. K., Migration of individual microvessel endothelial cells: Stochastic model and parameter measurement (1991) J. Cell. Sci., 99, pp. 419-430
Sarvestani, A. S., Jabbari, E., Analysis of cell locomotion on ligand gradient substrates (2009) Biotechnol. Bioeng., 103, pp. 424-429
Fields, G. B., Noble, R. L., Solid phase peptide synthesis utilizing 9-fluorenylmethoxy-carbonil amino acids (1990) Int. J. Pept. Protein Res., 35, pp. 161-214
Dickinson, R. B., Tranquillo, R. T., Optimal estimation of cell movement indices from the statistical analysis of cell tracking data (1993) AIChE J., 39, pp. 1995-2010
Walmod, P. S., Hartmann-Petersen, R., Berezin, A., Prag, S., Kiselyov, V. V., Berezin, V., Evaluation of individual-cell motility (2001) Methods Mol. Biol., 161, pp. 59-83
Mann, B. K., Gobin, A. S., Tsai, A. T., Schmedlen, R. H., West, J. L., Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: Synthetic ECM analogs for tissue engineering (2001) Biomaterials, 22, pp. 3045-3051
Massia, S. P., Hubbell, J. A., An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3 mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation (1991) J. Cell. Biol., 114 (5), pp. 1089-1100
Irvine, D. J., Hue, K. A., Mayes, A. M., Griffith, L. G., Simulations of cell-surface integrin binding to nanoscale-clustered adhesion ligands (2002) Biophys. J., 82, pp. 120-132
Dunn, G. A., Characterising a kinesis response: Time averaged measures of cell speed and directional persistence (1983) Agents Actions Suppl., 12, pp. 14-33
Codling, E. A., Plank, M. J., Benhamou, S., Random walk models in biology (2008) J. R Soc. Interface, 5, pp. 813-834
Di Milla, P. A., Barbee, K., Lauffenburger, D. A., Mathematical model for the effects of adhesion and mechanics on cell migration speed (1991) Biophys. J., 60 (1), pp. 15-37
Understanding the influence of a controlled spatial distribution of biological cues on cell activities can be useful to design "cell instructive" materials, able to control and guide the formation of engineered tissues in vivo and in vitro. To this purpose, biochemical and mechanical properties of the resulting biomaterial must be carefully designed and controlled. In this work, the effect of covalently immobilized RGD peptide gradients on poly(ethylene glycol) diacrylate hydrogels on cell behaviour was studied. We set up a mechanical device generating gradients based on a fluidic chamber. Cell response to RGD gradients with different slope (0.7, 1 and 2 mM cm(-1)) was qualitatively and quantitatively assessed by evaluating cell adhesion and, in particular, cell migration, compared to cells seeded on hydrogels with uniform distribution of RGD peptides. To evaluate the influence of RGD gradient and to exclude any concentration effect on cell response, all analyses were carried out in a specific region of the gradients which displayed the same average concentration of RGD (1.5 mM). Results suggest that cells recognize the RGD gradient and adhere onto it assuming a stretched shape. Moreover, cells tend to migrate in the direction of the gradient, as their speed is higher than that of cells migrating on hydrogels with a uniform distribution of RGD and increases by increasing RGD gradient steepness. This increment is due to an augmentation of bias speed component of the mean squared speed, that is, the drift of the cell population migrating on the anisotropic surface provided by the RGD gradient. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Petraglia F, Singh AA, Carafa V, Nebbioso A, Conte M, Scisciola L, Valente S, Baldi A, Mandoli A, Petrizzi VB, Ingenito C, De Falco S, Cicatiello V, Apicella I, Janssen-megens EM, Kim B, Yi G, Logie C, Heath S, Ruvo M, Wierenga ATJ, Flicek P, Yaspo ML, Della Valle V, Bernard O, Tomassi S, Novellino E, Feoli A, Sbardella G, Gut I, Vellenga E, Stunnenberg HG, Mai A, Martens JHA, Altucci L * Combined HAT/EZH2 modulation leads to cancer-selective cell death(288 views) Oncotarget (ISSN: 1949-2553electronic, 1949-2553linking), 2018 May 22; 9(39): 25630-25646. Impact Factor:5.008 ViewExport to BibTeXExport to EndNote