Critical lysine residues within the overlooked N-terminal domain of human APE1 regulate its biological functions(414 views) Fantini D, Vascotto C, Marasco D, D'Ambrosio C, Romanello M, Vitagliano L, Pedone C, Poletto M, Cesaratto L, Quadrifoglio F, Scaloni A, Radicella JP, Tell G
Keywords: Apurinic Apyrimidinic Endonuclease 1, Dna (apurinic Or Apyrimidinic Site) Lyase, Lysine, Nucleophosmin, Recombinant Protein, Unclassified Drug, Acetylation, Amino Acid Sequence, Amino Terminal Sequence, Article, Cell Culture, Controlled Study, Enzyme Regulation, Excision Repair, Gel Mobility Shift Assay, Human, Human Cell, In Vivo Study, Nonhuman, Nucleotide Sequence, Peptide Mapping, Peptide Synthesis, Phylogeny, Plasmid, Polymerase Chain Reaction, Priority Journal, Protein Expression, Protein Processing, Protein Protein Interaction, Rna Binding, Rna Metabolism, Surface Plasmon Resonance, Transient Transfection, Western Blotting, Binding Sites, Dna-(apurinic Or Apyrimidinic Site) Lyase, Hela Cells, Molecular Sequence Data, Protein Structure, Tertiary, Sequence Analysis, Mammalia, Chemistry, Classification,
Affiliations: *** IBB - CNR ***
Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy.
Department of Biological Sciences, University of Naples 'Federico II', Belarus
Institute of Biostructures and Bioimaging, National Research Council, 80134 Naples, Italy
Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
CEA, Institut de Radiobiologie Cellulaire et Moléculaire, UMR217 CNRS, F-92265 Fontenay-aux-Roses, France
References: Fung, H., Demple, B., A vital role for Ape1/Ref1 protein in repairing spontaneous DNA damage in human cells (2005) Mol. Cell, 17, pp. 463-47
Izumi, T., Brown, D.B., Naidu, C.V., Bhakat, K.K., MacInnes, M.A., Saito, H., Chen, D.J., Mitra, S., Two essential but distinct functions of the mammalian abasic endonuclease (2005) Proc. Natl Acad. Sci. USA, 102, pp. 5739-5743
Vascotto, C., Cesaratto, L., Zeef, L.A., Deganuto, M., D'Ambrosio, C., Scaloni, A., Romanello, M., Delneri, D., Genome-wide analysis and proteomic studies reveal APE1/Ref-1 multifunctional role in mammalian cells (2009) Proteomics, 9, pp. 1058-1074
Tell, G., Damante, G., Caldwell, D., Kelley, M.R., The intracellular localization of APE1/Ref-1: More than a passive phenomenon? Antioxid (2005) Redox Signal., 7, pp. 367-384
Tell, G., Quadrifoglio, F., Tiribelli, C., Kelley, M.R., The many functions of APE1/Ref-1: Not only a DNA-repair enzyme (2009) Antioxid. Redox Signal., 11, pp. 601-620
Xanthoudakis, S., Miao, G.G., Curran, T., The redox and DNA-repair activities of Ref-1 are encoded by nonoverlapping domains (1994) Proc. Natl Acad. Sci. USA, 91, pp. 23-27
Izumi, T., Mitra, S., Deletion analysis of human AP-endonuclease: Minimum sequence required for the endonuclease activity (1998) Carcinogenesis, 19, pp. 525-527
Bhakat, K.K., Izumi, T., Yang, S.H., Hazra, T.K., Mitra, S., Role of acetylated human AP-endonuclease (APE1/Ref-1) in regulation of the parathyroid hormone gene (2003) EMBO J., 1, pp. 6299-6309
Chung, U., Igarashi, T., Nishishita, H., Iwanari, H., Iwamatsu, A., Suwa, T., Mimori, T., Ogata, E., The interaction between Ku antigen and REF1 protein mediates negative gene regulation by extracellular calcium (1996) J. Biol. Chem., 271, pp. 8593-8598
Kuninger, D.T., Izumi, T., Papaconstantinou, J., Mitra, S., Human AP-endonuclease 1 and hnRNP-L interact with a nCaRE-like repressor element in the AP-endonuclease 1 promoter (2002) Nucleic Acids Res., 30, pp. 823-829
Vascotto, C., Fantini, D., Romanello, M., Cesaratto, L., Deganuto, M., Leonardi, A., Radicella, J.P., Scaloni, A., APE1/Ref-1 interacts with NPM1 within nucleoli and plays a role in the rRNA quality control process (2009) Mol. Cell. Biol., 29, pp. 1834-1854
Tell, G., Wilson Iii, D.M., Lee, C.H., Intrusion of a DNA repair protein in the RNome world: Is this the beginning of a new era? (2010) Mol. Cell. Biol., 30, pp. 366-371
Barnes, T., Kim, W.C., Mantha, A.K., Kim, S.E., Izumi, T., Mitra, S., Lee, C.H., Identification of Apurinic/apyrimidinic endonuclease 1 (APE1) as the endoribonuclease that cleaves c-myc mRNA (2009) Nucleic Acids Res., 37, pp. 3946-3958
Strauss, P.R., Holt, C.M., Domain mapping of human apurinic/apyrimidinic endonuclease. Structural and functional evidence for a disordered amino terminus and a tight globular carboxyl domain (1998) J. Biol. Chem., 273, pp. 14435-14441
Mol, C.D., Izumi, T., Mitra, S., Tainer, J.A., DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination (2000) Nature, 403, pp. 451-456
Gorman, M.A., Morera, S., Rothwell, D.G., De La Fortelle, E., Mol, C.D., Tainer, J.A., Hickson, I.D., Freemont, P.S., The crystal structure of the human DNA repair endonuclease HAP1 suggests the recognition of extra-helical deoxyribose at DNA abasic sites (1997) EMBO J., 16, pp. 6548-6558
Georgiadis, M.M., Luo, M., Gaur, R.K., Delaplane, S., Li, X., Kelley, M.R., Evolution of the redox function in mammalian apurinic/apyrimidinic endonuclease (2008) Mutat. Res., 643, pp. 54-63
Reardon, B.J., Lombardo, C.R., Sander, M., Drosophila Rrp1 domain structure as defined by limited proteolysis and biophysical analyses (1998) J. Biol. Chem., 273, pp. 33991-33999
Takeuchi, R., Ruike, T., Nakamura, R., Shimanouchi, K., Kanai, Y., Abe, Y., Ihara, A., Sakaguchi, K., Drosophila DNA polymerase zeta interacts with recombination repair protein 1, the Drosophila homologue of human abasic endonuclease 1 (2006) J. Biol. Chem., 281, pp. 11577-11585
Vidal, A.E., Boiteux, S., Hickson, I.D., Radicella, J.P., XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions (2001) EMBO J., 20, pp. 6530-6539
Wong, H.K., Muftuoglu, M., Beck, G., Imam, S.Z., Bohr, V.A., Wilson Iii, D.M., Cockayne syndrome B protein stimulates apurinic endonuclease 1 activity and protects against agents that introduce base excision repair intermediates (2007) Nucleic Acids Res., 35, pp. 4103-4113
Fan, Z., Beresford, P.J., Zhang, D., Xu, Z., Novina, C.D., Yoshida, A., Pommier, Y., Lieberman, J., Cleaving the oxidative repair protein Ape1 enhances cell death mediated by granzyme A (2003) Nat. Immunol., 4, pp. 145-153
Guo, Y., Chen, J., Zhao, T., Fan, Z., Granzyme K degrades the redox/DNA repair enzyme Ape1 to trigger oxidative stress of target cells leading to cytotoxicity (2008) Mol. Immunol., 45, pp. 2225-2235
Jackson, E.B., Theriot, C.A., Chattopadhyay, R., Mitra, S., Izumi, T., Analysis of nuclear transport signals in the human apurinic/apyrimidinic endonuclease (APE1/Ref1) (2005) Nucleic Acids Res., 33, pp. 3303-3312
Chattopadhyay, R., Wiederhold, L., Szczesny, B., Boldogh, I., Hazra, T.K., Izumi, T., Mitra, S., Identification and characterization of mitochondrial abasic (AP)-endonuclease in mammalian cells (2006) Nucleic Acids Res., 34, pp. 2067-2076
Tell, G., Crivellato, E., Pines, A., Paron, I., Pucillo, C., Manzini, G., Bandiera, A., Damante, G., Mitochondrial localization of APE/Ref-1 in thyroid cells (2001) Mutat. Res., 485, pp. 143-152
He, T., Weintraub, N.L., Goswami, P.C., Chatterjee, P., Flaherty, D.M., Domann, F.E., Oberley, L.W., Redox factor-1 contributes to the regulation of progression from G0/G1 to S by PDGF in vascular smooth muscle cells (2003) Am. J. Physiol. Heart Circ. Physiol., 285, pp. 804-812
Szczesny, B., Mitra, S., Effect of aging on intracellular distribution of abasic (AP) endonuclease 1 in the mouse liver (2005) Mech. Ageing Dev., 126, pp. 1071-1078
Grillo, C., D'Ambrosio, C., Scaloni, A., MacEroni, M., Merluzzi, S., Turano, C., Altieri, F., Cooperative activity of Ref-1/ APE and ERp57 in reductive activation of transcription factors (2006) Free Radic. Biol. Med., 41, pp. 1113-1123
Busso, C.S., Iwakuma, T., Izumi, T., Ubiquitination of mammalian AP endonuclease (APE1) regulated by the p53-MDM2 signaling pathway (2009) Oncogene, 28, pp. 1616-1625
Fantini, D., Vascotto, C., Deganuto, M., Bivi, N., Gustincich, S., Marcon, G., Quadrifoglio, F., Mitra, S., APE1/Ref-1 regulates PTEN expression mediated by Egr-1 (2008) Free Radic. Res., 42, pp. 20-29
Parlanti, E., Locatelli, G., Maga, G., Dogliotti, E., Human base excision repair complex is physically associated to DNA replication and cell cycle regulatory proteins (2007) Nucleic Acids Res., 35, pp. 1569-1577
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool (1990) J. Mol. Biol., 215, pp. 403-410
Katoh, K., Toh, H., Recent developments in the MAFFT multiple sequence alignment program (2008) Brief. Bioinform., 9, pp. 286-298
Tamura, K., Dudley, J., Nei, M., Kumar, S., MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0 (2007) Mol. Biol. Evol., 24, pp. 1596-1599
Saitou, N., Nei, M., The neighbor-joining method: A new method for reconstructing phylogenetic trees (1987) Mol. Biol. Evol., 4, pp. 406-425
Fields, G.B., Noble, R.L., Solid phase peptide synthesis utilizing 9-fluorenyl-methoxycarbonyl amino acids (1990) Int. J. Pept. Protein Res., 35, pp. 161-214
Aletras, A., Barlos, K., Gatos, D., Koutsogianni, S., Mamos, P., Preparation of the very acid-sensitive Fmoc-Lys(Mtt)-OH. Application in the synthesis of side-chain to side-chain cyclic peptides and oligolysine cores suitable for the solid-phase assembly of MAPs and TASPs (1995) Int. J. Pept. Protein Res., 45, pp. 488-496
Johnsson, B., Lofas, S., Lindquist, G., Immobilization of protein to a carboxymethyldextran modified gold surface for biospecific interaction analysis in SPR sensors (1991) Anal. Biochem., 198, pp. 268-277
Calvanese, L., Saporito, A., Oliva, R., D'Auria, G., Pedone, C., Paolillo, L., Ruvo, M., Falcigno, L., Structural insights into the interaction between the Cripto CFC domain and the ALK4 receptor (2009) J. Pept. Sci., 15, pp. 175-183
D'Ambrosio, C., Arena, S., Fulcoli, G., Scheinfeld, M.H., Zhou, D., D'Adamio, L., Scaloni, A., Hyperphosphorylation of JNK-interacting protein 1, a protein associated with Alzheimer disease (2006) Mol. Cell. Proteomics, 5, pp. 97-113
Wilson Iii, D.M., Ape1 abasic endonuclease activity is regulated by magnesium and potassium concentrations and is robust on alternative DNA structures (2005) J. Mol. Biol., 345, pp. 1003-1014
Fan, J., Matsumoto, Y., Wilson Iii, D.M., Nucleotide sequence and DNA secondary structure, as well as replication protein A, modulate the single-stranded abasic endonuclease activity of APE1 (2006) J. Biol. Chem., 281, pp. 3889-3898
Berquist, B.R., McNeill, D.R., Wilson Iii, D.M., Characterization of abasic endonuclease activity of human Ape1 on alternative substrates, as well as effects of ATP and sequence context on AP site incision (2008) J. Mol. Biol., 379, pp. 17-27
Masuda, Y., Bennett, R.A., Demple, B., Dynamics of the interaction of human apurinic endonuclease (Ape1) with its substrate and product (1998) J. Biol. Chem., 273, pp. 30352-30359
Marenstein, D.R., Wilson Iii, D.M., Teebor, G.W., Human AP endonuclease (APE1) demonstrates endonucleolytic activity against AP sites in single-stranded DNA (2004) DNA Repair, 3, pp. 527-533
Yamamori, T., Dericco, J., Naqvi, A., Hoffman, T.A., Mattagajasingh, I., Kasuno, K., Jung, S.B., Irani, K., SIRT1 deacetylates APE1 and regulates cellular base excision repair (2010) Nucleic Acids Res., 38, pp. 832-845
Wright, P.E., Dyson, H.J., Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm (1999) J. Mol. Biol., 293, pp. 321-331
Yu, E., Gaucher, S.P., Hadi, M.Z., Probing conformational changes in Ape1 during the progression of Base Excision Repair (2010) Biochemistry, 49, pp. 3786-3796
Colombo, E., Marine, J.C., Danovi, D., Falini, B., Pelicci, P.G., Nucleophosmin regulates the stability and transcriptional activity of p53 (2002) Nat. Cell. Biol., 4, pp. 529-533
Lee, C., Smith, B.A., Bandyopadhyay, K., Gjerset, R.A., DNA damage disrupts the p14ARF-B23(nucleophosmin) interaction and triggers a transient subnuclear redistribution of p14ARF (2005) Cancer Res., 65, pp. 9834-9842
Rubbi, C.P., Milner, J., Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses (2003) EMBO J., 22, pp. 6068-6077
Bhakat, K. K., Izumi, T., Yang, S. H., Hazra, T. K., Mitra, S., Role of acetylated human AP-endonuclease (APE1/Ref-1) in regulation of the parathyroid hormone gene (2003) EMBO J., 1, pp. 6299-6309
Kuninger, D. T., Izumi, T., Papaconstantinou, J., Mitra, S., Human AP-endonuclease 1 and hnRNP-L interact with a nCaRE-like repressor element in the AP-endonuclease 1 promoter (2002) Nucleic Acids Res., 30, pp. 823-829
Strauss, P. R., Holt, C. M., Domain mapping of human apurinic/apyrimidinic endonuclease. Structural and functional evidence for a disordered amino terminus and a tight globular carboxyl domain (1998) J. Biol. Chem., 273, pp. 14435-14441
Mol, C. D., Izumi, T., Mitra, S., Tainer, J. A., DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination (2000) Nature, 403, pp. 451-456
Gorman, M. A., Morera, S., Rothwell, D. G., De La Fortelle, E., Mol, C. D., Tainer, J. A., Hickson, I. D., Freemont, P. S., The crystal structure of the human DNA repair endonuclease HAP1 suggests the recognition of extra-helical deoxyribose at DNA abasic sites (1997) EMBO J., 16, pp. 6548-6558
Georgiadis, M. M., Luo, M., Gaur, R. K., Delaplane, S., Li, X., Kelley, M. R., Evolution of the redox function in mammalian apurinic/apyrimidinic endonuclease (2008) Mutat. Res., 643, pp. 54-63
Reardon, B. J., Lombardo, C. R., Sander, M., Drosophila Rrp1 domain structure as defined by limited proteolysis and biophysical analyses (1998) J. Biol. Chem., 273, pp. 33991-33999
Vidal, A. E., Boiteux, S., Hickson, I. D., Radicella, J. P., XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions (2001) EMBO J., 20, pp. 6530-6539
Wong, H. K., Muftuoglu, M., Beck, G., Imam, S. Z., Bohr, V. A., Wilson Iii, D. M., Cockayne syndrome B protein stimulates apurinic endonuclease 1 activity and protects against agents that introduce base excision repair intermediates (2007) Nucleic Acids Res., 35, pp. 4103-4113
Jackson, E. B., Theriot, C. A., Chattopadhyay, R., Mitra, S., Izumi, T., Analysis of nuclear transport signals in the human apurinic/apyrimidinic endonuclease (APE1/Ref1) (2005) Nucleic Acids Res., 33, pp. 3303-3312
Busso, C. S., Iwakuma, T., Izumi, T., Ubiquitination of mammalian AP endonuclease (APE1) regulated by the p53-MDM2 signaling pathway (2009) Oncogene, 28, pp. 1616-1625
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., Lipman, D. J., Basic local alignment search tool (1990) J. Mol. Biol., 215, pp. 403-410
Fields, G. B., Noble, R. L., Solid phase peptide synthesis utilizing 9-fluorenyl-methoxycarbonyl amino acids (1990) Int. J. Pept. Protein Res., 35, pp. 161-214
Wilson Iii, D. M., Ape1 abasic endonuclease activity is regulated by magnesium and potassium concentrations and is robust on alternative DNA structures (2005) J. Mol. Biol., 345, pp. 1003-1014
Berquist, B. R., McNeill, D. R., Wilson Iii, D. M., Characterization of abasic endonuclease activity of human Ape1 on alternative substrates, as well as effects of ATP and sequence context on AP site incision (2008) J. Mol. Biol., 379, pp. 17-27
Marenstein, D. R., Wilson Iii, D. M., Teebor, G. W., Human AP endonuclease (APE1) demonstrates endonucleolytic activity against AP sites in single-stranded DNA (2004) DNA Repair, 3, pp. 527-533
Wright, P. E., Dyson, H. J., Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm (1999) J. Mol. Biol., 293, pp. 321-331
Lee, C., Smith, B. A., Bandyopadhyay, K., Gjerset, R. A., DNA damage disrupts the p14ARF-B23 (nucleophosmin) interaction and triggers a transient subnuclear redistribution of p14ARF (2005) Cancer Res., 65, pp. 9834-9842
Rubbi, C. P., Milner, J., Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses (2003) EMBO J., 22, pp. 6068-6077
Critical lysine residues within the overlooked N-terminal domain of human APE1 regulate its biological functions
Apurinic/apyrimidinic endonuclease 1 (APE1), an essential protein in mammals, is involved in base excision DNA repair (BER) and in regulation of gene expression, acting as a redox co-activator of several transcription factors. Recent findings highlight a novel role for APE1 in RNA metabolism, which is modulated by nucleophosmin (NPM1). The results reported in this article show that five lysine residues (K24, K25, K27, K31 and K32), located in the APE1 N-terminal unstructured domain, are involved in the interaction of APE1 with both RNA and NPM1, thus supporting a competitive binding mechanism. Data from kinetic experiments demonstrate that the APE1 N-terminal domain also serves as a device for fine regulation of protein catalytic activity on abasic DNA. Interestingly, some of these critical lysine residues undergo acetylation in vivo. These results suggest that protein-protein interactions and/or post-translational modifications involving APE1 N-terminal domain may play important in vivo roles, in better coordinating and fine-tuning protein BER activity and function on RNA metabolism.
Critical lysine residues within the overlooked N-terminal domain of human APE1 regulate its biological functions
Petraglia F, Singh AA, Carafa V, Nebbioso A, Conte M, Scisciola L, Valente S, Baldi A, Mandoli A, Petrizzi VB, Ingenito C, De Falco S, Cicatiello V, Apicella I, Janssen-megens EM, Kim B, Yi G, Logie C, Heath S, Ruvo M, Wierenga ATJ, Flicek P, Yaspo ML, Della Valle V, Bernard O, Tomassi S, Novellino E, Feoli A, Sbardella G, Gut I, Vellenga E, Stunnenberg HG, Mai A, Martens JHA, Altucci L * Combined HAT/EZH2 modulation leads to cancer-selective cell death(284 views) Oncotarget (ISSN: 1949-2553electronic, 1949-2553linking), 2018 May 22; 9(39): 25630-25646. Impact Factor:5.008 ViewExport to BibTeXExport to EndNote