Department of Biomorphological and Functional Sciences, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
Institute of Biostructures and Bioimages, National Research Council, Naples, Italy
Centre of Excellence of Neurodegenerative Diseases, Institute of Pharmacological Sciences, University of Milan, Milan, Italy.
Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institute of Health (NIH), Bethesda, MD, United States
Mueller, M.M., Fusenig, N.E., Friends or foes - Bipolar effects of the tumour stroma in cancer (2004) Nat Rev Cancer, 4, pp. 839-849
Joyce, J.A., Pollard, J.W., Microenvironmental regulation of metastasis (2009) Nat Rev Cancer, 9, pp. 239-252
Pietras, K., Ostman, A., Hallmarks of cancer: Interactions with the tumor stroma (2010) Exp Cell Res, , doi:10.10l6/j.yexcr.2010.02.045
Cretu, A., Brooks, P.C., Impact of the non-cellular tumor microenvironment on metastasis: Potential therapeutic and imaging opportunities (2007) J Cell Physiol, 213, pp. 391-402
Dang, C.V., Kim, J.W., Gao, P., Yustein, J., The interplay between MYC and HIF in cancer (2008) Nat Rev Cancer, 8, pp. 51-56
Gatenby, R.A., Gillies, R.J., A microenvironmental model of carcinogenesis (2008) Nat Rev Cancer, 8, pp. 56-61
Denko, N.C., Hypoxia, HIF1 and glucose metabolism in the solid tumour (2008) Nat Rev Cancer, 8, pp. 705-713
Mason, R.B., Zhao, D., Pecheco-Torres, J., Cui, W., Kodibagkar, V.D., Gulaka, P.K., Multimodality imaging of hypoxia in preclinical settings (2010) Q J Nucl Med Mol Imaging, 54, pp. 259-280
Vander Heiden, M.G., Cantley, L.C., Thompson, C.B., Understanding the Warburg effect: The metabolic requirements of cell proliferation (2009) Science, 324, pp. 1029-1033
Gillies, R.J., Robey, I., Gatenby, R.A., Causes and consequences of increased glucose metabolism of cancers (2008) J Nucl Med, 49 (SUPPL. 2), pp. 24S-42S
Meads, M.B., Gatenby, R.A., Dalton, W.S., Environment-mediated drug resistance: A major contributor to minimal residual disease (2009) Nat Rev Cancer, 9, pp. 665-674
Stubbs, M., McSheehy, P.M., Griffiths, J.R., Causes and consequences of acidic pH in tumors: A magnetic resonance study (1999) Adv Enzyme Regul, 39, pp. 13-30
Raghunand, N., Gillies, R.J., pH and chemotherapy (2001) Novartis Found Symp, 240, pp. 199-211. , discussion 65-8
Rajendran, J.G., Krohn, K.A., Imaging hypoxia and angiogenesis in tumors (2005) Radiol Clin North Am, 43, pp. 169-187
Griffiths, J.R., Stevens, A.N., Iles, R.A., Gordon, R.E., Shaw, D., 31P-NMR investigation of solid tumours in the living rat (1981) Biosci Rep, 1, pp. 319-325
Evanochko, W.T., Ng, T.C., Lilly, M.B., Lawson, A.J., Corbett, T.H., Durant, J.R., In vivo 31P NMR study of the metabolism of murine mammary 16/C adenocarcinoma and its response to chemotherapy, x-radiation, and hyperthermia (1983) Proc Natl Acad Sci U S A, 80, pp. 334-338
Griffiths, J.R., Are cancer cells acidic? (1991) Br J Cancer, 64, pp. 425-427
Gillies, R.J., Liu, Z., Bhujwalla, Z., 31P-MRS measurements of extra-cellular pH of tumors using 3-aminopropylphosphonate (1994) Am J Physiol, 267, pp. C195-203
Gil, S., Zaderenzo, P., Cruz, F., Cerdan, S., Ballesteros, P., Imidazol-1-ylalkanoic acids as extrinsic 1H NMR probes for the determination of intracellular pH, extracellular pH and cell volume (1994) Bioorg Med Chem, 2, pp. 305-314
Zhou, J., Payen, J.F., Wilson, D.A., Traystman, R.J., Van Zijl, P.C., Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI (2003) Nat Med, 9, pp. 1085-1090
Aime, S., Barge, A., Delli Castelli, D., Fedeli, F., Mortillaro, A., Nielsen, F.U., Paramagnetic lanthanide(III) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications (2002) Magn Reson Med, 47, pp. 639-648
Garcia-Martin, M.L., Martinez, G.V., Raghunand, N., Sherry, A.D., Zhang, S., Gillies, R.J., High resolution pH(e) imaging of rat glioma using pH-dependent relaxivity (2006) Magn Reson Med, 55, pp. 309-315
Gallagher, F.A., Kettunen, M.I., Day, S.E., Hu, D.E., Ardenkjaer-Larsen, J.H., Zandt, R., Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate (2008) Nature, 453, pp. 940-943
Andreev, O.A., Dupuy, A.D., Segala, M., Sandugu, S., Serra, D.A., Chichester, C.O., Mechanism and uses of a membrane peptide that targets tumors and other acidic tissues in vivo (2007) Proc Natl Acad Sci U S A, 104, pp. 7893-7898
Urano, Y., Asanuma, D., Hama, Y., Koyama, Y., Barrett, T., Kamiya, M., Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes (2009) Nat Med, 15, pp. 104-109
Vavere, A.L., Biddlecombe, G.B., Spees, W.M., Garbow, J.R., Wijesinghe, D., Andreev, O.A., A novel technology for the imaging of acidic prostate tumors by positron emission tomography (2009) Cancer Res, 69, pp. 4510-4516
Egeblad, M., Werb, Z., New functions for the matrix metalloproteinases in cancer progression (2002) Nat Rev Cancer, 2, pp. 161-174
Smith, H.W., Marshall, C.J., Regulation of cell signalling by uPAR (2010) Nat Rev Mol Cell Biol, 11, pp. 23-36
Bremer, C., Tung, C.H., Weissleder, R., In vivo molecular target assessment of matrix metalloproteinase inhibition (2001) Nat Med, 7, pp. 743-748
Scherer, R.L., VanSaun, M.N., McIntyre, J.O., Matrisian, L.M., Optical imaging of matrix metalloproteinase-7 activity in vivo using a proteolytic nanobeacon (2008) Mol Imaging, 7, pp. 118-131
Jiang, T., Olson, E.S., Nguyen, Q.T., Roy, M., Jennings, P.A., Tsien, R.Y., Tumor imaging by means of proteolytic activation of cell-penetrating peptides (2004) Proc Natl Acad Sci U S A, 101, pp. 17867-17872
Olson, E.S., Aguilera, T.A., Jiang, T., Ellies, L.G., Nguyen, Q.T., Wong, E.H., In vivo characterization of activatable cell penetrating peptides for targeting protease activity in cancer (2009) Integr Biol, 1, pp. 382-393. , Camb
Breyholz, H.J., Wagner, S., Levkau, B., Schober, O., Schafers, M., Kopka, K., A 18F-radiolabeled analogue of CGS 27023A as a potential agent for assessment of matrix-metalloproteinase activity in vivo (2007) Q J Nucl Med Mol Imaging, 51, pp. 24-32
Zheng, Q.H., Fei, X., Liu, X., Wang, J.Q., Stone, K.L., Martinez, T.D., Comparative studies of potential cancer biomarkers carbon-11 labeled MMP inhibitors (S)-2-(4′-[11C]methoxybiphenyl-4-sulfonylamino)-3-methylbutyric acid and N-hydroxy-(R)-2-[[(4′-[11C]methoxyphenyl)sulfonyl]benzylamino]- 3-methylbut anamide (2004) Nucl Med Biol, 31, pp. 77-85
Kopka, K., Breyholz, H.J., Wagner, S., Uw, M.P., Riemann, B., Schroer, S., Synthesis and preliminary biological evaluation of new radioiodinated MMP inhibitors for imaging MMP activity in vivo (2004) Nucl Med Biol, 31, pp. 257-267
Schafers, M., Riemann, B., Kopka, K., Breyholz, H.J., Wagner, S., Schafers, K.P., Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo (2004) Circulation, 109, pp. 2554-2559
Wagner, S., Breyholz, H.J., Holtke, C., Faust, A., Schober, O., Schafers, M., A new 18F-labelled derivative of the MMP inhibitor CGS 27023A for PET: Radiosynthesis and initial small-animal PET studies (2009) Appl Radiat Isot, 67, pp. 606-610
Kulasegaram, R., Giersing, B., Page, C.J., Blower, P.J., Williamson, R.A., Peters, B.S., In vivo evaluation of 111In-DTPA-N-TIMP-2 in Kaposi sarcoma associated with HIV infection (2001) Eur J Nucl Med, 28, pp. 756-761
Lepage, M., Dow, W.C., Melchior, M., You, Y., Fingleton, B., Quarles, C.C., Noninvasive detection of matrix metalloproteinase activity in vivo using a novel magnetic resonance imaging contrast agent with a solubility switch (2007) Mol Imaging, 6, pp. 393-403
Lebel, R., Jastrzebska, B., Therriault, H., Cournoyer, M.M., McIntyre, J.O., Escher, E., Novel solubility-switchable MRI agent allows the noninvasive detection of matrix metalloproteinase-2 activity in vivo in a mouse model (2008) Magn Reson Med, 60, pp. 1056-1065
Olson, E.S., Jiang, T., Aguilera, T.A., Nguyen, Q.T., Ellies, L.G., Scadeng, M., Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases (2010) Proc Natl Acad Sci U S A, 107, pp. 4311-4316
D'Alessio, S., Blasi, F., The urokinase receptor as an entertainer of signal transduction (2009) Front Biosci, 14, pp. 4575-4587
Dass, K., Ahmad, A., Azmi, A.S., Sarkar, S.H., Sarkar, F.H., Evolving role of uPA/uPAR system in human cancers (2008) Cancer Treat Rev, 34, pp. 122-136
Del Vecchio, S., Stoppelli, M.P., Carriero, M.V., Fonti, R., Massa, O., Li, P.Y., Human urokinase receptor concentration in malignant and benign breast tumors by in vitro quantitative autoradiography: Comparison with urokinase levels (1993) Cancer Res, 53, pp. 3198-3206
Zannetti, A., Del Vecchio, S., Carriero, M.V., Fonti, R., Franco, P., Botti, G., Coordinate up-regulation of Sp1 DNA-binding activity and urokinase receptor expression in breast carcinoma (2000) Cancer Res, 60, pp. 1546-1551
Shariat, S.F., Roehrborn, C.G., McConnell, J.D., Park, S., Alam, N., Wheeler, T.M., Association of the circulating levels of the urokinase system of plasminogen activation with the presence of prostate cancer and invasion, progression, and metastasis (2007) J Clin Oncol, 25, pp. 349-355
Stephens, R.W., Nielsen, H.J., Christensen, I.J., Thorlacius-Ussing, O., Sorensen, S., Dano, K., Plasma urokinase receptor levels in patients with colorectal cancer: Relationship to prognosis (1999) J Natl Cancer Inst, 91, pp. 869-874
Li, Z.B., Niu, G., Wang, H., He, L., Yang, L., Ploug, M., Imaging of urokinase-type plasminogen activator receptor expression using a 64Cu-labeled linear peptide antagonist by microPET (2008) Clin Cancer Res, 14, pp. 4758-4766
Yang, L., Peng, X.H., Wang, Y.A., Wang, X., Cao, Z., Ni, C., Receptor-targeted nanoparticles for in vivo imaging of breast cancer (2009) Clin Cancer Res, 15, pp. 4722-4732
Santimaria, M., Moscatelli, G., Viale, G.L., Giovannoni, L., Neri, G., Viti, F., Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer (2003) Clin Cancer Res, 9, pp. 571-579
Berndorff, D., Borkowski, S., Moosmayer, D., Viti, F., Muller-Tiemann, B., Sieger, S., Imaging of tumor angiogenesis using 99mTc-labeled human recombinant anti-ED-B fibronectin antibody fragments (2006) J Nucl Med, 47, pp. 1707-1716
Tijink, B.M., Perk, L.R., Budde, M., Stigter-van Walsum, M., Visser, G.W., Kloet, R.W., (124)I-L19-SIP for immuno-PET imaging of tumour vasculature and guidance of (131)I-L19-SIP radioimmunotherapy (2009) Eur J Nucl Med Mol Imaging, 36, pp. 1235-1244
Rossin, R., Berndorff, D., Friebe, M., Dinkelborg, L.M., Welch, M.J., Small-animal PET of tumor angiogenesis using a (76)Br-labeled human recombinant antibody fragment to the ED-B domain of fibronectin (2007) J Nucl Med, 48, pp. 1172-1179
Orend, G., Chiquet-Ehrismann, R., Tenascin-C induced signaling in cancer (2006) Cancer Lett, 244, pp. 143-163
Herold-Mende, C., Mueller, M.M., Bonsanto, M.M., Schmitt, H.P., Kunze, S., Steiner, H.H., Clinical impact and functional aspects of tenascin-C expression during glioma progression (2002) Int J Cancer, 98, pp. 362-369
Riva, P., Franceschi, G., Riva, N., Casi, M., Santimaria, M., Adamo, M., Role of nuclear medicine in the treatment of malignant gliomas: The locoregional radioimmunotherapy approach (2000) Eur J Nucl Med, 27, pp. 601-609
Akabani, G., Reardon, D.A., Coleman, R.E., Wong, T.Z., Metzler, S.D., Bowsher, J.E., Dosimetry and radiographic analysis of 131I-labeled anti-tenascin 81C6 murine monoclonal antibody in newly diagnosed patients with malignant gliomas: A phase II study (2005) J Nucl Med, 46, pp. 1042-1051
Zalutsky, M.R., Reardon, D.A., Akabani, G., Coleman, R.E., Friedman, A.H., Friedman, H.S., Clinical experience with alpha-particle emitting 211At: Treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6 (2008) J Nucl Med, 49, pp. 30-38
Paganelli, G., Grana, C., Chinol, M., Cremonesi, M., De Cicco, C., De Braud, F., Antibody-guided three-step therapy for high grade glioma with yttrium-90 biotin (1999) Eur J Nucl Med, 26, pp. 348-357
Hicke, B.J., Stephens, A.W., Gould, T., Chang, Y.F., Lynott, C.K., Heil, J., Tumor targeting by an aptamer (2006) J Nucl Med, 47, pp. 668-678
Zhu, L., Niu, G., Fang, X., Chen, X., Preclinical molercular imaging of tumor angiogenesis (2010) Q J Nucl Med Mol Imaging, 54, pp. 291-308
Hay, R.V., Cao, B., Skinner, R.S., Su, Y., Zhao, P., Gustafson, M.F., Nuclear imaging of Met-expressing human and canine cancer xenografts with radiolabeled monoclonal antibodies (MetSeek) (2005) Clin Cancer Res, 11, pp. 7064s-9s
Perk, L.R., Stigter-van Walsum, M., Visser, G.W., Kloet, R.W., Vosjan, M.J., Leemans, C.R., Quantitative PET imaging of Met-expressing human cancer xenografts with 89Zr-labelled monoclonal antibody DN30 (2008) Eur J Nucl Med Mol Imaging, 35, pp. 1857-1867
Shaharabany, M., Abramovitch, R., Kushnir, T., Tsarfaty, G., Ravid-Megido, M., Horev, J., In vivo molecular imaging of met tyrosine kinase growth factor receptor activity in normal organs and breast tumors (2001) Cancer Res, 61, pp. 4873-4878
Cornelissen, B., McLarty, K., Kersemans, V., Reilly, R.M., The level of insulin growth factor-1 receptor expression is directly correlated with the tumor uptake of (111)In-IGF-1(E3R) in vivo and the clonogenic survival of breast cancer cells exposed in vitro to trastuzumab (Herceptin) (2008) Nucl Med Biol, 35, pp. 645-653
Tian, X., Aruva, M.R., Zhang, K., Shanthly, N., Cardi, C.A., Thakur, M.L., PET imaging of CCND1 mRNA in human MCF7 estrogen receptor positive breast cancer xenografts with oncogene-specific [64Cu]chelator-peptide nucleic acid-IGF1 analog radiohybridization probes (2007) J Nucl Med, 48, pp. 1699-1707
Koizumi, K., Hojo, S., Akashi, T., Yasumoto, K., Saiki, I., Chemokine receptors in cancer metastasis and cancer cell-derived chemokines in host immune response (2007) Cancer Sci, 98, pp. 1652-1658
Jacobson, O., Weiss, I.D., Szajek, L., Farber, J.M., Kiesewetter, D.O., 64Cu-AMD3100 - A novel imaging agent for targeting chemokine receptor CXCR4 (2009) Bioorg Med Chem, 17, pp. 1486-1493
Nimmagadda, S., Pullambhatla, M., Pomper, M.G., Immunoimaging of CXCR4 expression in brain tumor xenografts using SPECT/CT (2009) J Nucl Med, 50, pp. 1124-1130
Bhowmick, N. A., Moses, H. L., Tumor-stroma interactions (2005) Curr Opin Genet Dev, 15, pp. 97-10
Mueller, M. M., Fusenig, N. E., Friends or foes - Bipolar effects of the tumour stroma in cancer (2004) Nat Rev Cancer, 4, pp. 839-849
Joyce, J. A., Pollard, J. W., Microenvironmental regulation of metastasis (2009) Nat Rev Cancer, 9, pp. 239-252
Dang, C. V., Kim, J. W., Gao, P., Yustein, J., The interplay between MYC and HIF in cancer (2008) Nat Rev Cancer, 8, pp. 51-56
Gatenby, R. A., Gillies, R. J., A microenvironmental model of carcinogenesis (2008) Nat Rev Cancer, 8, pp. 56-61
Denko, N. C., Hypoxia, HIF1 and glucose metabolism in the solid tumour (2008) Nat Rev Cancer, 8, pp. 705-713
Mason, R. B., Zhao, D., Pecheco-Torres, J., Cui, W., Kodibagkar, V. D., Gulaka, P. K., Multimodality imaging of hypoxia in preclinical settings (2010) Q J Nucl Med Mol Imaging, 54, pp. 259-280
Vander Heiden, M. G., Cantley, L. C., Thompson, C. B., Understanding the Warburg effect: The metabolic requirements of cell proliferation (2009) Science, 324, pp. 1029-1033
Gillies, R. J., Robey, I., Gatenby, R. A., Causes and consequences of increased glucose metabolism of cancers (2008) J Nucl Med, 49 (SUPPL. 2), pp. 24S-42S
Meads, M. B., Gatenby, R. A., Dalton, W. S., Environment-mediated drug resistance: A major contributor to minimal residual disease (2009) Nat Rev Cancer, 9, pp. 665-674
Rajendran, J. G., Krohn, K. A., Imaging hypoxia and angiogenesis in tumors (2005) Radiol Clin North Am, 43, pp. 169-187
Griffiths, J. R., Stevens, A. N., Iles, R. A., Gordon, R. E., Shaw, D., 31P-NMR investigation of solid tumours in the living rat (1981) Biosci Rep, 1, pp. 319-325
Evanochko, W. T., Ng, T. C., Lilly, M. B., Lawson, A. J., Corbett, T. H., Durant, J. R., In vivo 31P NMR study of the metabolism of murine mammary 16/C adenocarcinoma and its response to chemotherapy, x-radiation, and hyperthermia (1983) Proc Natl Acad Sci U S A, 80, pp. 334-338
Griffiths, J. R., Are cancer cells acidic? (1991) Br J Cancer, 64, pp. 425-427
Gillies, R. J., Liu, Z., Bhujwalla, Z., 31P-MRS measurements of extra-cellular pH of tumors using 3-aminopropylphosphonate (1994) Am J Physiol, 267, pp. C195-203
Garcia-Martin, M. L., Martinez, G. V., Raghunand, N., Sherry, A. D., Zhang, S., Gillies, R. J., High resolution pH (e) imaging of rat glioma using pH-dependent relaxivity (2006) Magn Reson Med, 55, pp. 309-315
Gallagher, F. A., Kettunen, M. I., Day, S. E., Hu, D. E., Ardenkjaer-Larsen, J. H., Zandt, R., Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate (2008) Nature, 453, pp. 940-943
Andreev, O. A., Dupuy, A. D., Segala, M., Sandugu, S., Serra, D. A., Chichester, C. O., Mechanism and uses of a membrane peptide that targets tumors and other acidic tissues in vivo (2007) Proc Natl Acad Sci U S A, 104, pp. 7893-7898
Vavere, A. L., Biddlecombe, G. B., Spees, W. M., Garbow, J. R., Wijesinghe, D., Andreev, O. A., A novel technology for the imaging of acidic prostate tumors by positron emission tomography (2009) Cancer Res, 69, pp. 4510-4516
Smith, H. W., Marshall, C. J., Regulation of cell signalling by uPAR (2010) Nat Rev Mol Cell Biol, 11, pp. 23-36
Scherer, R. L., VanSaun, M. N., McIntyre, J. O., Matrisian, L. M., Optical imaging of matrix metalloproteinase-7 activity in vivo using a proteolytic nanobeacon (2008) Mol Imaging, 7, pp. 118-131
Olson, E. S., Aguilera, T. A., Jiang, T., Ellies, L. G., Nguyen, Q. T., Wong, E. H., In vivo characterization of activatable cell penetrating peptides for targeting protease activity in cancer (2009) Integr Biol, 1, pp. 382-393. , Camb
Breyholz, H. J., Wagner, S., Levkau, B., Schober, O., Schafers, M., Kopka, K., A 18F-radiolabeled analogue of CGS 27023A as a potential agent for assessment of matrix-metalloproteinase activity in vivo (2007) Q J Nucl Med Mol Imaging, 51, pp. 24-32
Zheng, Q. H., Fei, X., Liu, X., Wang, J. Q., Stone, K. L., Martinez, T. D., Comparative studies of potential cancer biomarkers carbon-11 labeled MMP inhibitors (S) -2- (4 - [11C] methoxybiphenyl-4-sulfonylamino) -3-methylbutyric acid and N-hydroxy- (R) -2- [[(4 - [11C] methoxyphenyl) sulfonyl] benzylamino] - 3-methylbut anamide (2004) Nucl Med Biol, 31, pp. 77-85
Olson, E. S., Jiang, T., Aguilera, T. A., Nguyen, Q. T., Ellies, L. G., Scadeng, M., Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases (2010) Proc Natl Acad Sci U S A, 107, pp. 4311-4316
Shariat, S. F., Roehrborn, C. G., McConnell, J. D., Park, S., Alam, N., Wheeler, T. M., Association of the circulating levels of the urokinase system of plasminogen activation with the presence of prostate cancer and invasion, progression, and metastasis (2007) J Clin Oncol, 25, pp. 349-355
Stephens, R. W., Nielsen, H. J., Christensen, I. J., Thorlacius-Ussing, O., Sorensen, S., Dano, K., Plasma urokinase receptor levels in patients with colorectal cancer: Relationship to prognosis (1999) J Natl Cancer Inst, 91, pp. 869-874
Li, Z. B., Niu, G., Wang, H., He, L., Yang, L., Ploug, M., Imaging of urokinase-type plasminogen activator receptor expression using a 64Cu-labeled linear peptide antagonist by microPET (2008) Clin Cancer Res, 14, pp. 4758-4766
Yang, L., Peng, X. H., Wang, Y. A., Wang, X., Cao, Z., Ni, C., Receptor-targeted nanoparticles for in vivo imaging of breast cancer (2009) Clin Cancer Res, 15, pp. 4722-4732
Tijink, B. M., Perk, L. R., Budde, M., Stigter-van Walsum, M., Visser, G. W., Kloet, R. W., (124) I-L19-SIP for immuno-PET imaging of tumour vasculature and guidance of (131) I-L19-SIP radioimmunotherapy (2009) Eur J Nucl Med Mol Imaging, 36, pp. 1235-1244
Zalutsky, M. R., Reardon, D. A., Akabani, G., Coleman, R. E., Friedman, A. H., Friedman, H. S., Clinical experience with alpha-particle emitting 211At: Treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6 (2008) J Nucl Med, 49, pp. 30-38
Hicke, B. J., Stephens, A. W., Gould, T., Chang, Y. F., Lynott, C. K., Heil, J., Tumor targeting by an aptamer (2006) J Nucl Med, 47, pp. 668-678
Hay, R. V., Cao, B., Skinner, R. S., Su, Y., Zhao, P., Gustafson, M. F., Nuclear imaging of Met-expressing human and canine cancer xenografts with radiolabeled monoclonal antibodies (MetSeek) (2005) Clin Cancer Res, 11, pp. 7064s-9s
Perk, L. R., Stigter-van Walsum, M., Visser, G. W., Kloet, R. W., Vosjan, M. J., Leemans, C. R., Quantitative PET imaging of Met-expressing human cancer xenografts with 89Zr-labelled monoclonal antibody DN30 (2008) Eur J Nucl Med Mol Imaging, 35, pp. 1857-1867
Molecular imaging of tumor microenvironment: Challenges and perspectives
Tumor microenvironment consists of a number of components including host resident stromal cells, infiltrating immune cells and extracellular matrix. The architecture surrounding tumor cells is not static but is subjected to a continuous remodeling in response to the dynamic interplay between tumor and stromal cells and to the production of extracellular proteases. In addition all these microenvironmental components along with cancer cells are exposed to abnormal physiologic conditions such as hypoxia and acidic extracellular pH that may induce both adaptive and constitutive changes in cancer and stromal cells. In this review, we will primarily focus on the possibility to visualize in vivo tumor microenvironment components and conditions as well as interactions with cancer cells. The major goal is to highlight the difficulties and the opportunities of this approach and how each imaging technology helps to overcome specific challenge.
Molecular imaging of tumor microenvironment: Challenges and perspectives
Aloj L, Aurilio M, Rinaldi V, D'Ambrosio L, Tesauro D, Peitl PK, Maina T, Mansi R, Von Guggenberg E, Joosten L, Sosabowski JK, Breeman WA, De Blois E, Koelewijn S, Melis M, Waser B, Beetschen K, Reubi JC, De Jong M * The EEE project(449 views) Proc Int Cosm Ray Conf Icrc Universidad Nacional Autonoma De Mexico, 2007; 5(HEPART2): 977-980. Impact Factor:0 ViewExport to BibTeXExport to EndNote