Nickel(II) complexes of the multihistidine peptide fragments of human prion protein(480 views) Turi I, Kállay C, Szikszai D, Pappalardo G, Di Natale G, De Bona P, Rizzarelli E, Sóvágó I
University of Debrecen, Department of Inorganic and Analytical Chemistry, H-4010 Debrecen, Hungary.
CNR, Institute of Biostructures and Bioimaging, Catania 95125 Catania, Italy
University of Catania, Department of Chemical Sciences, 95125 Catania, Italy
Valensin, D., Luczkowski, M., Mancini, F.M., Legowska, A., Gaggelli, E., Valensin, G., Rolka, K., Kozlowski, H., (2004) Dalton Trans., pp. 1284-1293
Bonomo, R.P., Cucinotta, V., Guiffrida, A., Impellizzeri, G., Magri, A., Pappalardo, G., Rizzarelli, E., Vagliasindi, L.I., (2005) Dalton Trans., pp. 150-158
Bonomo, R.P., Di Natale, G., Rizzarelli, E., Tabbi, G., Vagliasindi, L.I., (2009) Dalton Trans., pp. 2637-2646
Viles, J.H., Cohen, F.E., Prusiner, S.B., Goodin, D.B., Wright, P.E., Dyson, H.J., (1999) Proc. Natl Acad. Sci. USA, 96, pp. 2042-2047
Garnett, A.P., Viles, J.H., (2003) J. Biol. Chem., 278, pp. 6795-6802
Chattopadhyay, M., Walter, E.D., Newell, D.J., Jackson, P.J., Aronoff-Spencer, E., Peisach, J., Gerfen, G.J., Millhauser, G.L., (2005) J. Am. Chem. Soc., 127, pp. 12647-12656
Stevens, D.J., Walter, E.D., Rodriguez, A., Draper, D., Davies, P., Brown, D.R., Millhauser, G.L., (2009) PLoS Pathog., 5, pp. e1000390
Jones, C.E., Abdelraheim, S.R., Brown, D.R., Viles, J.H., (2004) J. Biol. Chem., 279, pp. 32018-32027
Belosi, B., Gaggelli, E., Guerrini, R., Kozlowski, H., Luczkowski, M., Mancini, F.M., Remelli, M., Valensin, G., (2004) Chem. Bio. Chem., 5, pp. 349-359
Berti, F., Gaggelli, E., Guerrini, R., Janicka, A., Kozlowski, H., Legowska, A., Miecznikowska, H., Valensin, G., (2007) Chem. Eur. J., 13, pp. 1991-2001
Jószai, V., Nagy, Z., Osz, K., Sanna, D., Di Natale, G., La Mendola, D., Pappalardo, G., Sóvágó, I., (2006) J. Inorg. Biochem., 100, pp. 1399-1409
Di Natale, G., Grasso, G., Impellizzeri, G., La Mendola, D., Micera, G., Mihala, N., Nagy, Z., Sóvágó, I., (2005) Inorg. Chem., 44, pp. 7214-7225
Grasso, D., Grasso, G., Guantieri, V., Impellizzeri, G., La Rosa, C., Milardi, D., Micera, G., Sóvágó, I., (2006) Chem. Eur. J., 12, pp. 537-547
Osz, K., Nagy, Z., Pappalardo, G., Di Natale, G., Sanna, D., Micera, G., Rizzarelli, E., Sóvágó, I., (2007) Chem. Eur. J., 13, pp. 7129-7143
Di Natale, G., Osz, K., Nagy, Z., Sanna, D., Micera, G., Pappalardo, G., Sóvágó, I., Rizzarelli, E., (2009) Inorg. Chem., 48, pp. 4239-4250
Kozlowski, H., Bal, W., Dyba, M., Kowalik-Jankowska, T., (1999) Coord. Chem. Rev., 184, pp. 319-346
Sóvágó, I., Osz, K., (2006) Dalton Trans., pp. 3841-3854
Jackson, G.S., Murray, I., Hosszu, L.L.P., Gibbs, N., Waltho, J.P., Clarke, A.R., Collinge, J., (2001) Proc. Nat. Acad. Sci. USA, 98, pp. 8531-8535
Walter, E.D., Stevens, D.J., Visconte, M.P., Millhauser, G.L., (2007) J. Am. Chem. Soc., 129, pp. 15440-15441
Camponeschi, F., Gaggelli, E., Kozlowski, H., Valensin, D., Valensin, G., (2009) Dalton Trans., pp. 4643-4645
Rachidi, W., Chimienti, F., Aouffen, M., Senator, A., Guiraud, P., Seve, M., Favier, A., (2009) J. Trace Elem. Med. Biol., 23, pp. 214-223
Kállay, C., Osz, K., Dávid, A., Valastyán, Z., Malandrinos, G., Hadjiliadis, N., Sóvágó, I., (2007) Dalton Trans., pp. 4040-4047
Timári, S., Kállay, C., Osz, K., Sóvágó, I., Várnagy, K., (2009) Dalton Trans., pp. 1962-1971
Karavelas, T., Mylonas, M., Malandrinos, G., Plakatouras, J.C., Hadjiliadis, N., Mlynarz, P., Kozlowski, H., (2005) J. Inorg. Biochem., 99, pp. 606-615
Panagioutou, K., Panagopoulou, M., Karavelas, T., Dokorou, V., Hagarman, A., Soffer, J., Schweitzer-Stenner, R., Hadjiliadis, N., (2008) Bioinorg. Chem. Appl.
Zoroddu, M.A., Peana, M., Medici, S., Anedda, R., (2009) Dalton Trans., pp. 5523-5534
Zoroddu, M.A., Medici, S., Peana, M., (2009) J. Inorg. Biochem., 103, pp. 1214-1220
Jones, C.E., Klewpatinond, M., Abdelraheim, S.R., Brown, D.R., Viles, J.H., (2005) J. Mol. Biol., 346, pp. 1393-1407
Klewpatinond, M., Viles, J.H., (2007) FEBS Lett., 581, pp. 1430-1434
Shearer, J., Soh, P., (2007) J. Inorg. Biochem., 101, pp. 370-373
Zékány, L., Nagypál, I., (1985) Computational Methods for the Determination of Stability Constants, pp. 291-355. , Plenum Press, New York, D.J. Leggett (Ed.)
Gans, P., Sabatini, A., Vacca, A., (1996) Talanta, 43, pp. 1739-1753
Kállay, C., Várnagy, K., Malandrinos, G., Hadjiliadis, N., Sanna, D., Sóvágó, I., (2009) Inorg. Chim. Acta, 362, pp. 935-945
Valensin, D., Gajda, K., Gralka, E., Valensin, G., Kamysz, W., Kozlowski, H., (2010) J. Inorg. Biochem., 104, pp. 71-78
Turi, I., Kállay, C., Szikszai, D., Pappalardo, G., Di Natale, G., De Bona, P., Rizzarelli, E., Sóvágó, I., (2010) J. Inorg. Biochem., 104, pp. 885-891
Józsa, É., Osz, K., Kállay, C., De Bona, P., Damante, C.A., Pappalardo, G., Rizzarelli, E., Sóvágó, I., (2010) Dalton Trans., 39, pp. 7046-7053
Damante, C.A., Osz, K., Nagy, Z., Grasso, G., Pappalardo, G., Rizzarelli, E., Sóvágó, I., (2011) Inorg. Chem., 50, pp. 5342-5350
Nickel(II) complexes of the multihistidine peptide fragments of human prion protein
Nickel(II) complexes of the peptide fragments of human prion protein containing histidyl residues both inside and outside the octarepeat domain have been studied by the combined application of potentiometric, UV-visible and circular dichroism spectroscopic methods. The imidazole-N donor atoms of histidyl residues are the exclusive metal binding sites below pH 7.5, but the formation of stable macrochelates was characteristic only for the peptide HuPrP(76-114) containing four histidyl residues. Yellow colored square planar complexes were obtained above pH 7.5-8 with the cooperative deprotonation of three amide nitrogens in the [N(im),N(-),N(-), N(-)] coordination mode. It was found that the peptides can bind as many nickel(II) ions as the number of independent histidyl residues. All data supported that the complex formation processes of nickel(II) are very similar to those of copper(II), but with a significantly reduced stability for nickel(II), which shifts the complex formation reactions into the slightly alkaline pH range. The formation of coordination isomers was characteristic of the mononuclear complexes with a significant preference for the nickel(II) binding at the histidyl sites outside the octarepeat domain. The results obtained for the two-histidine fragments of the protein, HuPrP(91-115), HuPrP(76-114)H85A and HuPrP(84-114)H96A, made it possible to compare the binding ability of the His96 and His111 sites. These data reveal a significant difference in the nickel(II) and copper(II) binding sites of the peptides: His96 was found to predominate almost completely for nickel(II) ions, while the opposite order, but with comparable concentrations, was reported for copper(II). (C) 2010 Elsevier Inc. All rights reserved.
Nickel(II) complexes of the multihistidine peptide fragments of human prion protein