Structure and flexibility in cold-adapted iron superoxide dismutases: The case of the enzyme isolated from Pseudoalteromonas haloplanktis(497 views) Merlino A, Russo Krauss I, Castellano I, De Vendittis E, Rossi B, Conte M, Vergara A, Sica F
Dipartimento di Chimica, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy
Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy
Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Via Pansini 5, I-80131 Napoli, Italy
References: Baldwin, R.L., Temperature dependence of the hydrophobic interaction in protein folding (1986) Proc. Natl. Acad. Sci. USA, 83, pp. 8069-807
Boucher, I.W., Brzozowski, A.M., Brannigan, J.A., Schnick, C., Smith, D.J., Kyes, S.A., Wilkinson, A.J., The crystal structure of superoxide dismutase from Plasmodium falciparum (2006) BMC Struct. Biol., 6, p. 20
Boucher, I.W., Kalliomaa, A.K., Levdikov, V.M., Blagova, E.V., Fogg, M.J., Brannigan, J.A., Wilson, K.S., Wilkinson, A.J., Structures of two superoxide dismutases from Bacillus anthracis reveal a novel active centre (2005) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 61, pp. 621-624
Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Warren, G.L., Crystallography & NMR system: a new software suite for macromolecular structure determination (1998) Acta Crystallogr. D Biol. Crystallogr., 54 (PART 5), pp. 905-921
Castellano, I., Di Maro, A., Ruocco, M.R., Chambery, A., Parente, A., Di Martino, M.T., Parlato, G., De Vendittis, E., Psychrophilic superoxide dismutase from Pseudoalteromonas haloplanktis: biochemical characterization and identification of a highly reactive cysteine residue (2006) Biochimie, 88, pp. 1377-1389
Castellano, I., Ruocco, M.R., Cecere, F., Di Maro, A., Chambery, A., Michniewicz, A., Parlato, G., De Vendittis, E., Glutathionylation of the iron superoxide dismutase from the psychrophilic eubacterium Pseudoalteromonas haloplanktis (2008) Biochim. Biophys. Acta, 1784, pp. 816-826
(1994), 50, pp. 760-763. , CCP4, The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. CrystallogrChen, Y.C., Lo, Y.S., Hsu, W.C., Yang, J.M., 3D-partner: a web server to infer interacting partners and binding models (2007) Nucleic Acids Res., 35, pp. W561-W567
Culotta, V.C., Yang, M., O'Halloran, T.V., Activation of superoxide dismutases: putting the metal to the pedal (2006) Biochim. Biophys. Acta, 1763, pp. 747-758
D'Amico, S., Collins, T., Marx, J.C., Feller, G., Gerday, C., Psychrophilic microorganisms: challenges for life (2006) EMBO Rep., 7, pp. 385-389
D'Amico, S., Claverie, P., Collins, T., Georlette, D., Gratia, E., Hoyoux, A., Meuwis, M.A., Gerday, C., Molecular basis of cold adaptation (2002) Philos. Trans. R. Soc. London Ser. B Biol. Sci., 357, pp. 917-925
De Vendittis, E., Castellano, I., Cotugno, R., Ruocco, M.R., Raimo, G., Masullo, M., Adaptation of model proteins from cold to hot environments involves continuous and small adjustments of average parameters related to amino acid composition (2008) J. Theor. Biol., 250, pp. 156-171
Dello Russo, A., Rullo, R., Nitti, G., Masullo, M., Bocchini, V., Iron superoxide dismutase from the archaeon Sulfolobus solfataricus: average hydrophobicity and amino acid weight are involved in the adaptation of proteins to extreme environments (1997) Biochim. Biophys. Acta, 1343, pp. 23-30
Dominy, B.N., Minoux, H., Brooks, C.L., An electrostatic basis for the stability of thermophilic proteins (2004) Proteins, 57, pp. 128-141
Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., Liang, J., CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues (2006) Nucleic Acids Res., 34, pp. W116-W118
Fedoy, A.E., Yang, N., Martinez, A., Leiros, H.K., Steen, I.H., Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium Desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability (2007) J. Mol. Biol., 372, pp. 130-149
Feller, G., Life at low temperatures: is disorder the driving force? (2007) Extremophiles, 11, pp. 211-216
Gerday, C., Aittaleb, M., Bentahir, M., Chessa, J.P., Claverie, P., Collins, T., D'Amico, S., Feller, G., Cold-adapted enzymes: from fundamentals to biotechnology (2000) Trends Biotechnol., 18, pp. 103-107
Gianese, G., Bossa, F., Pascarella, S., Comparative structural analysis of psychrophilic and meso- and thermophilic enzymes (2002) Proteins, 47, pp. 236-249
Grove, L.E., Hallman, J.K., Emerson, J.P., Halfen, J.A., Brunold, T.C., Synthesis, X-ray crystallographic characterization, and electronic structure studies of a di-azide iron(III) complex: implications for the azide adducts of iron(III) superoxide dismutase (2008) Inorg. Chem., 47, pp. 5762-5774
Huston, A.L., Haeggstrom, J.Z., Feller, G., Cold adaptation of enzymes: structural, kinetic and microcalorimetric characterizations of an aminopeptidase from the Arctic psychrophile Colwellia psychrerythraea and of human leukotriene A(4) hydrolase (2008) Biochim. Biophys. Acta, 1784, pp. 1865-1872
Jackson, T.A., Brunold, T.C., Combined spectroscopic/computational studies on Fe- and Mn-dependent superoxide dismutases: insights into second-sphere tuning of active site properties (2004) Acc. Chem. Res., 37, pp. 461-470
Jackson, T.A., Yikilmaz, E., Miller, A.F., Brunold, T.C., Spectroscopic and computational study of a non-heme iron [Fe-NO]7 system: exploring the geometric and electronic structures of the nitrosyl adduct of iron superoxide dismutase (2003) J. Am. Chem. Soc., 125, pp. 8348-8363
Jones, T.A., Zou, J.Y., Cowan, S.W., Kjeldgaard, M., Improved methods for building protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr. A, 47 (PART 2), pp. 110-119
Kerfeld, C.A., Yoshida, S., Tran, K.T., Yeates, T.O., Cascio, D., Bottin, H., Berthomieu, C., Boussac, B.A., The 1.6Å resolution structure of Fe-superoxide dismutase from the thermophilic cyanobacterium Thermosynechococcus elongatus (2003) J. Biol. Inorg. Chem., 8, pp. 707-714
Kim, F.J., Kim, H.P., Hah, Y.C., Roe, J.H., Differential expression of superoxide dismutases containing Ni and Fe/Zn in Streptomyces coelicolor (1996) Eur. J. Biochem., 241, pp. 178-185
Kim, S.Y., Hwang, K.Y., Kim, S.H., Sung, H.C., Han, Y.S., Cho, Y., Structural basis for cold adaptation. Sequence, biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum (1999) J Biol Chem, 274, pp. 11761-11767
Lah, M.S., Dixon, M.M., Pattridge, K.A., Stallings, W.C., Fee, J.A., Ludwig, M.L., Structure-function in Escherichia coli iron superoxide dismutase: comparisons with the manganese enzyme from Thermus thermophilus (1995) Biochemistry, 34, pp. 1646-1660
Laskowski, R.A., Macarthur, M.W., Moss, M.D., Thorton, J.M., PROCHECK: a program to check the stereochemical quality of protein structure (1993) J. Appl. Crystallogr., 26, pp. 283-291
Marx, J.C., Collins, T., D'Amico, S., Feller, G., Gerday, C., Cold-adapted enzymes from marine Antarctic microorganisms (2007) Mar. Biotechnol. (NY), 9, pp. 293-304
Marx, J.C., Blaise, V., Collins, T., D'Amico, S., Delille, D., Gratia, E., Hoyoux, A., Gerday, C., A perspective on cold enzymes: current knowledge and frequently asked questions (2004) Cell Mol. Biol. (Noisy-le-grand), 50, pp. 643-655
Margesin, R., Feller, G., Biotechnological applications of psychrophiles (2010) Environ. Technol., 31, pp. 835-844
Maugini, E., Tronelli, D., Bossa, F., Pascarella, S., Structural adaptation of the subunit interface of oligomeric thermophilic and hyperthermophilic enzymes (2009) Comput. Biol. Chem., 33, pp. 137-148
Mccord, J.M., Fridovich, I., Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein) (1969) J. Biol. Chem., 244, pp. 6049-6055
Mcdonald, I.K., Thornton, J.M., Satisfying hydrogen bonding potential in proteins (1994) J. Mol. Biol., 238, pp. 777-793
Merlino, A., Russo Krauss, I., Castellano, I., De Vendittis, E., Vergara, A., Sica, F., Crystallization and preliminary X-ray diffraction studies of a psychrophilic iron superoxide dismutase from Pseudoalteromonas haloplanktis (2008) Protein Pept. Lett., 15, pp. 415-418
Miller, A.F., Superoxide dismutases: active sites that save, but a protein that kills (2004) Curr. Opin. Chem. Biol., 8, pp. 162-168
Munoz, I.G., Moran, J.F., Becana, M., Montoya, G., The crystal structure of an eukaryotic iron superoxide dismutase suggests intersubunit cooperation during catalysis (2005) Protein Sci., 14, pp. 387-394
Olufsen, M., Smalas, A.O., Moe, E., Brandsdal, B.O., Increased flexibility as a strategy for cold adaptation: a comparative molecular dynamics study of cold- and warm-active uracil DNA glycosylase (2005) J. Biol. Chem., 280, pp. 18042-18048
Otwinowsky, Z., Minor, W., (1997), pp. 307-326. , Processing of X-ray diffraction data collected in oscillation mode, Methods EnzymolPaiardini, A., Sali, R., Bossa, F., Pascarella, S., " Hot cores" in proteins: comparative analysis of the apolar contact area in structures from hyper/thermophilic and mesophilic organisms (2008) BMC Struct. Biol., 8, p. 14
Pedersen, H.L., Willassen, N.P., Leiros, I., The first structure of a cold-adapted superoxide dismutase (SOD): biochemical and structural characterization of iron SOD from Aliivibrio salmonicida (2009) Acta Crystallogr. Sect. F: Struct. Biol. Cryst. Commun., 65, pp. 84-92
Ringe, D., Petsko, G.A., Yamakura, F., Suzuki, K., Ohmori, D., Structure of iron superoxide dismutase from Pseudomonas ovalis at 2.9-Å resolution (1983) Proc. Natl. Acad. Sci. USA, 80, pp. 3879-3883
Siddiqui, K.S., Cavicchioli, R., Cold-adapted enzymes (2006) Annu. Rev. Biochem., 75, pp. 403-433
Slykhouse, T.O., Fee, J.A., Physical and chemical studies on bacterial superoxide dismutases. Purification and some anion binding properties of the iron-containing protein of Escherichia coli B (1976) J. Biol. Chem., 251, pp. 5472-5477
Stallings, W.C., Pattridge, K.A., Strong, R.K., Ludwig, M.L., Manganese and iron superoxide dismutases are structural homologs (1984) J. Biol. Chem., 259, pp. 10695-10699
Sterner, R., Liebl, W., Thermophilic adaptation of proteins (2001) Crit. Rev. Biochem. Mol. Biol., 36, pp. 39-106
Stoddard, B.L., Ringe, D., Petsko, G.A., The structure of iron superoxide dismutase from Pseudomonas ovalis complexed with the inhibitor azide (1990) Protein Eng., 4, pp. 113-119
Trapani, S., Navaza, J., AMoRe: classical and modern (2008) Acta Crystallogr. D. Biol. Crystallogr., 64, pp. 11-16
Trivedi, S., Gehlot, H.S., Rao, S.R., Protein thermostability in Archaea and Eubacteria (2006) Genet. Mol. Res., 5, pp. 816-827
Tsuruta, H., Mikami, B., Yamamoto, C., Yamagata, H., The role of group bulkiness in the catalytic activity of psychrophile cold-active protein tyrosine phosphatase (2008) FEBS J., 275, pp. 4317-4328
Ursby, T., Adinolfi, B.S., Al-Karadaghi, S., De Vendittis, E., Bocchini, V., Iron superoxide dismutase from the archaeon Sulfolobus solfataricus: analysis of structure and thermostability (1999) J. Mol. Biol., 286, pp. 189-205
Whitmore, L., Wallace, B.A., DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data (2004) Nucleic Acids Res., 32, pp. W668-W673
Baldwin, R. L., Temperature dependence of the hydrophobic interaction in protein folding (1986) Proc. Natl. Acad. Sci. USA, 83, pp. 8069-807
Boucher, I. W., Brzozowski, A. M., Brannigan, J. A., Schnick, C., Smith, D. J., Kyes, S. A., Wilkinson, A. J., The crystal structure of superoxide dismutase from Plasmodium falciparum (2006) BMC Struct. Biol., 6, p. 20
Boucher, I. W., Kalliomaa, A. K., Levdikov, V. M., Blagova, E. V., Fogg, M. J., Brannigan, J. A., Wilson, K. S., Wilkinson, A. J., Structures of two superoxide dismutases from Bacillus anthracis reveal a novel active centre (2005) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 61, pp. 621-624
Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Warren, G. L., Crystallography & NMR system: a new software suite for macromolecular structure determination (1998) Acta Crystallogr. D Biol. Crystallogr., 54 (PART 5), pp. 905-921
(1994), 50, pp. 760-763. , CCP4, The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. CrystallogrChen, Y. C., Lo, Y. S., Hsu, W. C., Yang, J. M., 3D-partner: a web server to infer interacting partners and binding models (2007) Nucleic Acids Res., 35, pp. W561-W567
Culotta, V. C., Yang, M., O'Halloran, T. V., Activation of superoxide dismutases: putting the metal to the pedal (2006) Biochim. Biophys. Acta, 1763, pp. 747-758
Dominy, B. N., Minoux, H., Brooks, C. L., An electrostatic basis for the stability of thermophilic proteins (2004) Proteins, 57, pp. 128-141
Fedoy, A. E., Yang, N., Martinez, A., Leiros, H. K., Steen, I. H., Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium Desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability (2007) J. Mol. Biol., 372, pp. 130-149
Grove, L. E., Hallman, J. K., Emerson, J. P., Halfen, J. A., Brunold, T. C., Synthesis, X-ray crystallographic characterization, and electronic structure studies of a di-azide iron (III) complex: implications for the azide adducts of iron (III) superoxide dismutase (2008) Inorg. Chem., 47, pp. 5762-5774
Huston, A. L., Haeggstrom, J. Z., Feller, G., Cold adaptation of enzymes: structural, kinetic and microcalorimetric characterizations of an aminopeptidase from the Arctic psychrophile Colwellia psychrerythraea and of human leukotriene A (4) hydrolase (2008) Biochim. Biophys. Acta, 1784, pp. 1865-1872
Jackson, T. A., Brunold, T. C., Combined spectroscopic/computational studies on Fe- and Mn-dependent superoxide dismutases: insights into second-sphere tuning of active site properties (2004) Acc. Chem. Res., 37, pp. 461-470
Jackson, T. A., Yikilmaz, E., Miller, A. F., Brunold, T. C., Spectroscopic and computational study of a non-heme iron [Fe-NO] 7 system: exploring the geometric and electronic structures of the nitrosyl adduct of iron superoxide dismutase (2003) J. Am. Chem. Soc., 125, pp. 8348-8363
Jones, T. A., Zou, J. Y., Cowan, S. W., Kjeldgaard, M., Improved methods for building protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr. A, 47 (PART 2), pp. 110-119
Kerfeld, C. A., Yoshida, S., Tran, K. T., Yeates, T. O., Cascio, D., Bottin, H., Berthomieu, C., Boussac, B. A., The 1. 6 resolution structure of Fe-superoxide dismutase from the thermophilic cyanobacterium Thermosynechococcus elongatus (2003) J. Biol. Inorg. Chem., 8, pp. 707-714
Kim, F. J., Kim, H. P., Hah, Y. C., Roe, J. H., Differential expression of superoxide dismutases containing Ni and Fe/Zn in Streptomyces coelicolor (1996) Eur. J. Biochem., 241, pp. 178-185
Kim, S. Y., Hwang, K. Y., Kim, S. H., Sung, H. C., Han, Y. S., Cho, Y., Structural basis for cold adaptation. Sequence, biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum (1999) J Biol Chem, 274, pp. 11761-11767
Lah, M. S., Dixon, M. M., Pattridge, K. A., Stallings, W. C., Fee, J. A., Ludwig, M. L., Structure-function in Escherichia coli iron superoxide dismutase: comparisons with the manganese enzyme from Thermus thermophilus (1995) Biochemistry, 34, pp. 1646-1660
Laskowski, R. A., Macarthur, M. W., Moss, M. D., Thorton, J. M., PROCHECK: a program to check the stereochemical quality of protein structure (1993) J. Appl. Crystallogr., 26, pp. 283-291
Marx, J. C., Collins, T., D'Amico, S., Feller, G., Gerday, C., Cold-adapted enzymes from marine Antarctic microorganisms (2007) Mar. Biotechnol. (NY), 9, pp. 293-304
Marx, J. C., Blaise, V., Collins, T., D'Amico, S., Delille, D., Gratia, E., Hoyoux, A., Gerday, C., A perspective on cold enzymes: current knowledge and frequently asked questions (2004) Cell Mol. Biol. (Noisy-le-grand), 50, pp. 643-655
Mccord, J. M., Fridovich, I., Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein) (1969) J. Biol. Chem., 244, pp. 6049-6055
Mcdonald, I. K., Thornton, J. M., Satisfying hydrogen bonding potential in proteins (1994) J. Mol. Biol., 238, pp. 777-793
Miller, A. F., Superoxide dismutases: active sites that save, but a protein that kills (2004) Curr. Opin. Chem. Biol., 8, pp. 162-168
Munoz, I. G., Moran, J. F., Becana, M., Montoya, G., The crystal structure of an eukaryotic iron superoxide dismutase suggests intersubunit cooperation during catalysis (2005) Protein Sci., 14, pp. 387-394
Pedersen, H. L., Willassen, N. P., Leiros, I., The first structure of a cold-adapted superoxide dismutase (SOD): biochemical and structural characterization of iron SOD from Aliivibrio salmonicida (2009) Acta Crystallogr. Sect. F: Struct. Biol. Cryst. Commun., 65, pp. 84-92
Siddiqui, K. S., Cavicchioli, R., Cold-adapted enzymes (2006) Annu. Rev. Biochem., 75, pp. 403-433
Slykhouse, T. O., Fee, J. A., Physical and chemical studies on bacterial superoxide dismutases. Purification and some anion binding properties of the iron-containing protein of Escherichia coli B (1976) J. Biol. Chem., 251, pp. 5472-5477
Stallings, W. C., Pattridge, K. A., Strong, R. K., Ludwig, M. L., Manganese and iron superoxide dismutases are structural homologs (1984) J. Biol. Chem., 259, pp. 10695-10699
Stoddard, B. L., Ringe, D., Petsko, G. A., The structure of iron superoxide dismutase from Pseudomonas ovalis complexed with the inhibitor azide (1990) Protein Eng., 4, pp. 113-119
Structure and flexibility in cold-adapted iron superoxide dismutases: The case of the enzyme isolated from Pseudoalteromonas haloplanktis
Superoxide dismutases (SODs) are metalloenzymes catalysing the dismutation of superoxide anion radicals into molecular oxygen and hydrogen peroxide. Here, we present the crystal structure of a cold-adapted Fe-SOD from the Antarctic eubacterium Pseudoalteromonas haloplanktis (PhSOD), and that of its complex with sodium azide. The structures were compared with those of the corresponding homologues having a high sequence identity with PhSOD, such as the mesophilic SOD from Escherichia coli (EcSOD) or Pseudomonas ovalis, and the psychrophilic SOD from Aliivibrio salmonicida (AsSOD). These enzymes shared a large structural similarity, such as a conserved tertiary structure and arrangement of the two monomers, an almost identical total number of inter- and intramolecular hydrogen bonds and salt bridges. However, the two cold-adapted SODs showed an increased flexibility of the active site residues with respect to their mesophilic homologues. Structural information was combined with a characterisation of the chemical and thermal stability performed by CD and fluorescence measurements. Despite of its psychrophilic origin, the denaturation temperature of PhSOD was comparable with that of the mesophilic EcSOD, whereas AsSOD showed a lower denaturation temperature. On the contrary, the values of the denaturant concentration at the transition midpoint were in line with the psychrophilic/mesophilic origin of the proteins. These data provide additional support to the hypothesis that cold-adapted enzymes achieve efficient catalysis at low temperature, by increasing the flexibility of their active site; moreover, our results underline how fine structural modifications can alter enzyme flexibility and/or stability without compromising the overall structure of typical rigid enzymes, such as SODs. (C) 2010 Elsevier Inc. All rights reserved.
Structure and flexibility in cold-adapted iron superoxide dismutases: The case of the enzyme isolated from Pseudoalteromonas haloplanktis