Correlation between Hemichrome Stability and the Root Effect in Tetrameric Hemoglobins(405 views) Vergara A, Franzese M, Merlino A, Bonomi G, Verde C, Giordano D, Di Prisco G, Lee HC, Peisach J, Mazzarella L
Keywords: Heme, Hemoglobin, Article, Crystal Structure, Electron Spin Resonance, Fish, Oxidation, X Ray Crystallography, Animals, X-Ray, Electron Spin Resonance Spectroscopy, Hemeproteins, Hydrogen-Ion Concentration, Iron, Models, Molecular, Oxygen, Perciformes, Peroxidase, Protein Conformation, Protein Stability, Spectrum Analysis, Cottoperca Gobio, Gymnodraco Acuticeps, Mammalia, Pisces, Trematomus Bernacchii, Trematomus Newnesi,
Affiliations: *** IBB - CNR ***
Department of Chemistry, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy
Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale Delle Ricerche, Naples, Italy
Institute of Protein Biochemistry, Consiglio Nazionale Delle Ricerche, Naples, Italy
Department of Physiology and Biophysics, Albert Einstein College of Medicine, Yeshiva University, New York, NY, United States
References: Ray, A., Friedman, B.A., Friedman, J.M., Trehalose glass-facilitated thermal reduction of metmyoglobin and methemoglobin (2002) J. Am. Chem. Soc, 124, pp. 7270-727
Rachmilewitz, E.A., Peisach, J., Blumberg, W.E., Stability of oxyhemoglobin A and its constituent chains and their derivatives (1971) J. Biol. Chem, 246, pp. 3356-3366
Rifkind, J.M., Abugo, O., Levy, A., Heim, J., Detection, formation, and relevance of hemichromes and hemochromes (1994) Methods Enzymol, 231, pp. 449-480
Vergara, A., Vitagliano, L., di Prisco, G., Verde, C., Mazzarella, L., Spectroscopic and crystallographic characterization of hemichromes in tetrameric hemoglobins (2008) Methods Enzymol, 436 A, pp. 421-440
Smagghe, B., Trent, J.T.I., Hargrove, M.S., NO dioxygenase activity in hemoglobins is ubiquitous in vitro, but limited in vivo (2008) PLoS ONE, 3, pp. 1-10
de Sanctis, D., Pesce, A., Nardini, M., Bolognesi, M., Bocedi, A., Structure-function relationships in the growing hexa-coordinate hemoglobin sub-family (2004) IUBMB Life, 56, pp. 643-651
Pesce, A., De Sanctis, D., Nardini, M., Dewilde, S., Moens, L., Reversible hexa- to penta-coordination of the heme Fe atom modulates ligand binding properties of neuroglobin and cytoglobin (2004) IUBMB Life, 56, pp. 657-664
Croci, S., Pedrazzi, G., Passeri, G., Piccolo, P., Ortalli, I., Acetylphenylhydrazine induced haemoglobin oxidation in erythrocytes studied by Mossbauer spectroscopy (2001) Biochim. Biophys. Acta, 1568, pp. 99-104
Feng, L., Zhou, S., Gu, L., Gell, D., Mackay, J., Structure of oxidized α-haemoglobin bound to AHSP reveals a protective mechanism for haem (2005) Nature, 435, pp. 697-701
Riccio, A., Vitagliano, L., di Prisco, G., Zagari, A., Mazzarella, L., The crystal structure of a tetrameric hemoglobin in a partial hemichrome state (2002) Proc. Natl. Acad. Sci. USA, 99, pp. 9801-9806
Vergara, A., Franzese, M., Merlino, A., Vitagliano, L., di Prisco, G., Structural characterization of ferric hemoglobins from three Antarctic fish species of the suborder Notothenioidei (2007) Biophys. J, 93, pp. 2822-2829
Vitagliano, L., Bonomi, G., Riccio, A., di Prisco, G., Smulevich, G., The oxidation process of Antarctic fish hemoglobins (2004) Eur. J. Biochem, 271, pp. 1651-1659
Vitagliano, L., Vergara, A., Bonomi, G., Merlino, A., Smulevich, G., Spectroscopic and crystallographic analysis of a tetrameric hemoglobin oxidation pathway reveals features of an intermediate R/T state (2008) J. Am. Chem. Soc, 120, pp. 10527-10531
Johnston, I.A., Muscle metabolism and growth in Antarctic fishes (suborder Notothenioidei): Evolution in a cold environment (2003) Comp. Biochem. Physiol. B, 136, pp. 701-713
Verde, C., Vergara, A., Giordano, D., Mazzarella, L., di Prisco, G., Hemoglobins of fishes living at polar latitudes: Current knowledge on evolutionary and structural adaptation in a changing environment (2008) Curr. Protein Pept. Sci, 9, pp. 578-590
Brittain, T., The Root effect in hemoglobins (2005) J. Inorg. Biochem, 99, pp. 120-129
Perutz, M.F., Brunori, M., Stereochemistry of cooperative effects in fish and amphibian hemoglobins (1982) Nature, 299, pp. 421-426
Unzai, S., Imai, K., Park, S.-Y., Nagai, K., Brittain, T., (2008) Mutagenic Studies on the Origins of the Root Effect, , Springer, Milan, Italy
Mazzarella, L., Bonomi, G., Lubrano, M.C., Merlino, A., Vergara, A., Minimal structural requirement of Root effect: Crystal structure of the cathodic hemoglobin isolated from Trematomus newnesi (2006) Proteins, 62, pp. 316-321
Mazzarella, L., Vergara, A., Vitagliano, L., Merlino, A., Bonomi, G., High resolution crystal structure of deoxy hemoglobin from Trematomus bernacchii at different pH values: The role of histidine residues in modulating the strength of the Root effect (2006) Proteins, 65, pp. 490-498
Yokoyama, T., Chong, K.T., Miyazaki, G., Morimoto, H., Shih, D.T.B., Novel mechanisms of pH sensitivity in tuna hemoglobin: A structural explanation of the Root effect (2004) J. Biol. Chem, 279, pp. 28632-28640
Giordano, D., Vergara, A., Lee, H.C., Peisach, J., Balestrieri, M., Hemoglobin structure/function and globin-gene evolution in the Arctic fish Liparis tunicatus (2007) Gene, 406, pp. 48-58
Camardella, L., Caruso, C., D'Avino, R., di Prisco, G., Rutigliano, B., Hemoglobin of the Antarctic fish Pagothenia bernacchii. Amino acid sequence, oxygen equilibria and crystal structure of its carbonmonoxy derivative (1992) J. Mol. Biol, 224, pp. 449-460
D'Avino, R., Caruso, C., Tamburrini, M., Romano, M., Rutigliano, B., Molecular characterization of the functionally distinct hemoglobins of the Antarctic fish Trematomus newnesi (1994) J. Biol. Chem, 269, pp. 9675-9681
Tamburrini, M., A. Brancaccio, R. Ippoliti, and G. di Prisco. 1992. The amino acid sequence and oxygen-binding properties of the single hemoglobin of the cold-adapted Antarctic teleost Gymnodraco acuticeps. Arch. Biochem. Biophys. 292:295-302Giordano, D., Boechi, L., Vergara, A., Martí, M.A., Samuni, U., The hemoglobins of the sub-Antarctic fish Cottoperca gobio, a phyletically basal species. Oxygen-binding equilibria, kinetics and molecular dynamics (2008) FEBS J, 276, pp. 2266-2277
Fukada, H., Takahashi, K., Enthalpy and heat capacity changes for the proton dissociation of various buffer components in 0.1 M potassium chloride (1998) Proteins, 33, pp. 159-166
Otwinowski, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol, 276, pp. 307-326
Ito, N., Komiyama, N.H., Fermi, G., Structure of deoxyhemoglobin of the Antarctic fish Pagothenia bernacchii with an analysis of the structural basis of the Root effect by comparison of the liganded and unliganded hemoglobin structures (1995) J. Mol. Biol, 250, pp. 648-658
Jones, T.A., Zou, J.Y., Cowan, S.W., Kjedgaard, M., Improved methods for binding protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr. D Biol. Crystallogr, 56, pp. 714-721
Everse, J., Johnson, M., Marini, M., Peroxidative activities of hemoglobin and hemoglobin derivatives (1994) Methods Enzymol, 231, pp. 547-559
Gabbianelli, R., Zolese, G., Bertoli, E., Falcioni, G., Correlation between functional and structural changes of reduced and oxidized trout hemoglobins I and IV at different pHs. A circular dichroism study (2004) Eur. J. Biochem, 271, pp. 1971-1979
Peisach, J., EPR of metalloproteins: Truth tables revisited (1998) Foundations of Modern, pp. 346-360. , EPR. S. S. Eaton, G. R. Eaton, and K. Salikhov, editors. World Scientific Press, Singapore
Ikeda-Saito, M., Hori, H., Andersson, L.A., Prince, R.C., Pickering, I.J., Coordination structure of the ferric heme iron in engineered distal histidine myoglobin mutants (1992) J. Biol. Chem, 267, pp. 22843-22852
Quillin, M., Arduini, R., Olson, J., Phillips, G.J., High-resolution crystal structures of distal histidine mutants of sperm whale myoglobin (1993) J. Mol. Biol, 234, pp. 140-155
Smulevich, G., Feis, A., Howes, B.D., Fifteen years of Raman spectroscopy of engineered heme containing peroxidases: What have we learned? (2005) Acc. Chem. Res, 38, pp. 433-440
Ilari, A., Bonamore, A., Farina, A., Johnson, K., Boffi, A., The X-ray structure of ferric Escherichia coli flavohemoglobin reveals an unexpected geometry of the distal heme pocket (2002) J. Biol. Chem, 26, pp. 23725-23732
Marmo Moreira, L., Lima Poli, A., Costa-Filho, A.J., Imasato, H., Pentacoordinate and hexacoordinate ferric hemes in acid medium: EPR, UV-Vis and CD studies of the giant extracellular hemoglobin of Glossoscolex paulistus (2006) Biophys. Chem, 124, pp. 62-72
Boffi, A., Takahashi, S., Spagnuolo, C., Rousseau, D.L., Chiancone, E., Structural characterization of oxidized dimeric Scapharca inaequivalvis hemoglobin by resonance Raman spectroscopy (1994) J. Biol. Chem, 269, pp. 20437-20440
Smulevich, G., Understanding heme cavity structure of peroxidases: Comparison of electronic absorption and resonance Raman spectra with crystallographic results (1998) Biospectroscopy, 4, pp. S3-S17
Hersleth, H.P., Hsiao, Y.W., Ryde, U., Görbitz, C.H., Andersson, K.K., The influence of X-rays on the structural studies of peroxide-derived myoglobin intermediates (2008) Chem. Biodivers, 5, pp. 2067-2089
Merlino, A., Verde, C., di Prisco, G., Mazzarella, L., Vergara, A., Reduction of ferric hemoglobin from Trematomus bernacchii in a partial bis-histidyl state produces a deoxy coordination even when encapsulated into the crystal phase (2008) Spectroscopy, 22, pp. 143-152
Baron, C.P., Skibsted, L.H., Andersen, H.J., Peroxidation of linoleate at physiological pH: Hemichrome formation by substrate binding protects against metmyoglobin activation by hydrogen peroxide (2000) Free Radic. Biol. Med, 28, pp. 549-558
Rachmilewitz, E. A., Peisach, J., Blumberg, W. E., Stability of oxyhemoglobin A and its constituent chains and their derivatives (1971) J. Biol. Chem, 246, pp. 3356-3366
Rifkind, J. M., Abugo, O., Levy, A., Heim, J., Detection, formation, and relevance of hemichromes and hemochromes (1994) Methods Enzymol, 231, pp. 449-480
Johnston, I. A., Muscle metabolism and growth in Antarctic fishes (suborder Notothenioidei): Evolution in a cold environment (2003) Comp. Biochem. Physiol. B, 136, pp. 701-713
Perutz, M. F., Brunori, M., Stereochemistry of cooperative effects in fish and amphibian hemoglobins (1982) Nature, 299, pp. 421-426
Jones, T. A., Zou, J. Y., Cowan, S. W., Kjedgaard, M., Improved methods for binding protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr. D Biol. Crystallogr, 56, pp. 714-721
Hersleth, H. P., Hsiao, Y. W., Ryde, U., G rbitz, C. H., Andersson, K. K., The influence of X-rays on the structural studies of peroxide-derived myoglobin intermediates (2008) Chem. Biodivers, 5, pp. 2067-2089
Baron, C. P., Skibsted, L. H., Andersen, H. J., Peroxidation of linoleate at physiological pH: Hemichrome formation by substrate binding protects against metmyoglobin activation by hydrogen peroxide (2000) Free Radic. Biol. Med, 28, pp. 549-558
Correlation between Hemichrome Stability and the Root Effect in Tetrameric Hemoglobins
Oxidation of Hbs leads to the formation of different forms of Fe(III) that are relevant to a range of biochemical and physiological functions. Here we report a combined EPR/x-ray crystallography study performed at acidic pH on six ferric tetrameric Hbs. Five of the Hbs were isolated from the high-Antarctic notothenioid fishes Trematomus bernacchii, Trematomus newnesi, and Gymnodraco acuticeps, and one was isolated from the sub-Antarctic notothenioid Cottoperca gobio. Our EPR analysis reveals that 1), in all of these Hbs, at acidic pH the aquomet form and two hemichromes coexist; and 2), only in the three Hbs that exhibit the Root effect is a significant amount of the pentacoordinate (5C) high-spin Fe(III) form found. The crystal structure at acidic pH of the ferric form of the Root-effect Hb from T. bernacchii is also reported at 1.7 angstrom resolution. This structure reveals a 5C state of the heme iron for both the alpha- and beta-chains within a T quaternary structure. Altogether, the spectroscopic and crystallographic results indicate that the Root effect and hemichrome stability at acidic pH are correlated in tetrameric Hbs. Furthermore, Antarctic fish Hbs exhibit higher peroxidase activity than mammalian and temperate fish Hbs, suggesting that a partial hemichrome state in tetrameric Hbs, unlike in monomeric Hbs, does not remove the need for protection from peroxide attack, in contrast to previous results from monomeric Hbs.
Correlation between Hemichrome Stability and the Root Effect in Tetrameric Hemoglobins
Kállay C, Dávid A, Timári S, Nagy EM, Sanna D, Garribba E, Micera G, De Bona P, Pappalardo G, Rizzarelli E, Sóvágó I * Copper(II) complexes of rat amylin fragments(357 views) Dalton T (ISSN: 1477-9234, 1477-9226, 1477-9234electronic), 2011 Oct 14; 40(38): 9711-9721. Impact Factor:3.838 ViewExport to BibTeXExport to EndNote