Keywords: Bacterium, Cold Adaptation, Fish, Hemoglobin, Hexacoordination, Neuroglobin, Bacteria (microorganisms), Bis-Histidine, Protein Data Bank, Structural Analyses,
Affiliations: *** IBB - CNR ***
Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy
Department of Chemistry, University of Naples Federico II, Complesso Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy
Institute of Biostructures and Bioimages, CNR, Via Mezzocannone 16, I-80134 Naples, Italy
References: Awenius, C., Hanken, T., Burmester, T., Neuroglobins from the zebrafish Danio rerio and the pufferfish Tetraodon nigroviridis (2001) Biochem. Biophys. Res. Commun., 287, pp. 418-42
Brunori, M., Vallone, B., Neuroglobin, seven years after (2007) Cell. Mol. Life Sci., 64, pp. 1259-1268
Brunori, M., Giuffrè, A., Nienhaus, K., Nienhaus, G.U., Scandurra, F.M., Vallone, B., Neuroglobin, nitric oxide, and oxygen: functional pathways and conformational changes (2005) Proc. Natl. Acad. Sci. U.S.A., 102, pp. 8483-8488
Burmester, T., Weich, B., Reinhardt, S., Hankeln, T., A vertebrate globin expressed in the brain (2000) Nature, 407, pp. 520-523
Burmester, T., Ebner, B., Weich, B., Hankeln, T., Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues (2002) Mol. Biol. Evol., 19, pp. 416-421
Chen, Z., Cheng, C.H., Zhang, J., Cao, L., Chen, L., Zhou, L., Jin, Y., Chen, L., Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish (2008) Proc. Natl. Acad. Sci. U.S.A., 105, pp. 12944-12949
Cheng, C.H., di Prisco, G., Verde, C., The "icefish paradox". Which is the task of neuroglobin in Antarctic hemoglobin-less icefish? (2009) IUBMB Life, 61, pp. 184-188
Couture, M., Das, T.K., Lee, H.C., Peisach, J., Rousseau, D.L., Wittenberg, B.A., Wittenberg, J.B., Guertin, M., Chlamydomonas chloroplast ferrous hemoglobin (1999) J. Biol. Chem., 274, pp. 6898-6910
de Sanctis, D., Dewilde, S., Pesce, A., Moens, L., Ascenzi, P., Hankeln, T., Burmester, T., Bolognesi, M., Crystal structure of cytoglobin: the fourth globin type discovered in man displays heme hexa-coordination (2004) J. Mol. Biol., 336, pp. 917-927
Dettaï, A., di Prisco, G., Lecointre, G., Parisi, E., Verde, C., Inferring evolution of fish proteins: the globin case study (2008) Methods Enzymol., 436, pp. 539-570
Dewilde, S., Ebner, B., Vinck, E., Gilany, K., Hankeln, T., Burmester, T., Kreiling, J., Moens, L., The Nerve hemoglobin of the bivalve mollusc Spisula solidissima (2006) J. Biol. Chem., 281, pp. 5364-5372
di Prisco, G., A study of hemoglobin in Antarctic fishes: purification and characterization of hemoglobins from four species (1988) Comp. Biochem. Physiol. B, 90 B, pp. 631-637
di Prisco, G., Eastman, J.T., Giordano, D., Parisi, E., Verde, C., Biogeography and adaptation of Notothenioid fish: hemoglobin function and globin-gene evolution (2007) Gene, 398, pp. 143-155
Eastman, J.T., (1993) Antarctic Fish Biology: Evolution in a Unique Environment, , Academic Press, San Diego, CA
Falzone, C.J., Christie Vu, B., Scott, N.L., Lecomte, J.T., The solution structure of the recombinant hemoglobin from the cyanobacterium Synechocystis sp. PCC 6803 in its hemichrome state (2002) J. Mol. Biol., 324, pp. 1015-1029
Feng, L., Zhou, S., Gu, L., Gell, D., Mackay, J., Weiss, M., Gow, A., Shi, Y., Structure of oxidized α-haemoglobin bound to AHSP reveals a protective mechanism for heme (2005) Nature, 435, pp. 697-701
Gardner, P.R., Gardner, A.M., Martin, L.A., Salzman, A.L., Nitric oxide dioxygenase: an enzymic function for flavohemoglobin (1998) Proc. Natl. Acad. Sci. U.S.A., 95, pp. 10378-10383
Garry, D.J., Ordway, G.A., Lorenz, J.N., Radford, N.B., Chin, E.R., Grange, R.W., Bassel-Duby, R., Williams, R.S., Mice without myoglobin (1998) Nature, 395, pp. 905-908
Giordano, D., Parrilli, E., Dettaï, A., Russo, R., Barbiero, G., Marino, G., Lecointre, G., Verde, C., The truncated hemoglobins in the Antarctic psychrophilic bacterium Pseudoalteromonas haloplanktis TAC125 (2007) Gene, 398, pp. 69-77
Gödecke, A., Flögel, U., Zanger, K., Ding, Z., Hirchenhain, J., Decking, U.K.M., Schrader, J., Disruption of myoglobin in mice induces multiple compensatory mechanisms (1999) Proc. Natl. Acad. Sci. U.S.A., 96, pp. 10495-10500
Greenberg, D.A., Jin, K., Khan, A.A., Neuroglobin: an endogenous neuroprotectant (2008) Curr. Opin. Pharmacol., 8, pp. 20-24
Hardison, R., Hemoglobins from bacteria to man: evolution of different patterns of gene expression (1998) J. Exp. Biol., 201, pp. 1099-1117
Hargrove, M.S., Brucker, E.A., Stec, B., Sarath, G., Arredondo-Peter, R., Klucas, R.V., Olson, J.S., Phillips, G.N., Crystal structure of a nonsymbiotic plant hemoglobin (2000) Structure, 8, pp. 1005-1014
Holland, H.D., The oxygenation of the atmosphere and oceans (2006) Philos. Trans. R. Soc., B361, pp. 903-916
Hoy, J.A., Kundu, S., Trent III, J.T., Ramaswamy, S., Hargrove, M.S., The crystal structure of Synechocystis hemoglobin with a covalent heme linkage (2004) J. Biol. Chem., 279, pp. 16535-16542
Kendrew, J.C., Bodo, G., Dintzis, H.M., Parrish, R.G., Wyckoff, H., Phillips, D.C., A three-dimensional model of the myoglobin molecule obtained by X-ray analysis (1958) Nature, 181, pp. 662-666
Kriegl, J.M., Bhattacharyya, A.J., Nienhaus, K., Deng, P., Minkow, O., Nienhaus, G.U., Ligand binding and protein dynamics in neuroglobin (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 7992-7997
Kugelstadt, D., Haberkamp, M., Hankeln, T., Burmester, T., Neuroglobin, cytoglobin, and a novel, eye-specific globin from chicken (2004) Biochem. Biophys. Res. Commun., 325, pp. 719-725
Médigue, C., Krin, E., Pascal, G., Barbe, V., Bernsel, A., Bertin, P.N., Cheung, F., Danchin, A., Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125 (2005) Genome Res., 15, pp. 1325-1335
Merlino, A., Verde, C., di Prisco, G., Mazzarella, L., Vergara, A., Reduction of ferric hemoglobin from Trematomus bernacchii in a partial bis-histidyl state produces a deoxy coordination even when encapsulated into the crystal phase (2008) Spectroscopy: Biomed. Appl., 22 (2-3), pp. 143-152
Milani, M., Pesce, A., Nardini, M., Ouellet, H., Ouellet, Y., Dewilde, S., Bocedi, A., Bolognesi, M., Structural bases for heme binding and diatomic ligand recognition in truncated hemoglobins (2005) J. Inorg. Biochem., 99, pp. 97-109
Minning, D.M., Gow, A.J., Bonaventura, J., Braun, R., Dewhirst, M., Goldberg, D.E., Stamler, J.S., Ascaris haemoglobin is a nitric oxide-activated "deoxygenase" (1999) Nature, 401, pp. 497-502
Mitchell, D.T., Kitto, G.B., Hackert, M.L., Structural analysis of monomeric hemichrome and dimeric cyanomet hemoglobins from Caudina arenicola (1995) J. Mol. Biol., 251, pp. 421-431
Monod, J., Wyman, J., Changeux, J.P., On the nature of allosteric transitions: a plausible model (1965) J. Mol. Biol., 12, pp. 88-118
Nardini, M., Pesce, A., Milani, M., Bolognesi, M., Protein fold and structure in the truncated (2/2) globin family (2007) Gene, 398, pp. 2-11
Perutz, M.F., Species adaptation in a protein molecule (1983) Mol. Biol. Evol., 1, pp. 1-28
Perutz, M.F., Kendrew, J.C., Watson, H.C., Structure and function of haemoglobin. II. Some relations between polypeptide chain configuration and amino acid sequence (1965) J. Mol. Biol., 13, pp. 669-678
Perutz, M.F., Fermi, G., Luisi, B., Shanan, B., Liddington, R.C., Stereochemistry of cooperative mechanisms in hemoglobin (1987) Acc. Chem. Res., 20, pp. 309-321
Pesce, A., Couture, M., Dewilde, S., Guertin, M., Yamauchi, K., Ascenzi, P., Moens, L., Bolognesi, M., A novel two-over-two a-helical sandwich fold is characteristic of the truncated hemoglobin family (2000) EMBO J., 19, pp. 2424-2434
Pesce, A., Dewilde, S., Nardini, M., Moens, L., Ascenzi, P., Hankeln, T., Burmester, T., Bolognesi, M., Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity (2003) Structure, 11, pp. 1087-1095
Poole, R.K., Nitric oxide and nitrosative stress tolerance in bacteria (2005) Biochem. Soc. Trans., 33, pp. 176-180
Razzera, G., Vernal, J., Baruh, D., Serpa, V.I., Tavares, C., Lara, F., Souza, E.M., Valente, A.P., Spectroscopic characterization of a truncated haemoglobin from the nitrogen-fixing bacterium Herbaspirillum seropedicae (2008) J. Biol. Inorg. Chem., 13, pp. 1085-1096
Riccio, A., Vitagliano, L., di Prisco, G., Zagari, A., Mazzarella, L., The crystal structure of a tetrameric hemoglobin in a partial hemichrome state (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 9801-9806
Rifkind, J.M., Abugo, O., Levy, A., Heim, J.M., Detection, formation, and relevance of hemichrome and hemochrome (1994) Methods Enzymol., 231, pp. 449-480
Robinson, V.L., Smith, B.B., Arnone, A., A pH-dependent aquomet-to-hemichrome transition in crystalline horse methemoglobin (2003) Biochemistry, 42, pp. 10113-10125
Roesner, A., Fuchs, C., Hankeln, T., Burmester, T., A globin gene of ancient evolutionary origin in lower vertebrates: evidence for two distinct globin families in animals (2005) Mol. Biol. Evol., 22, pp. 12-20
Ruud, J.T., Vertebrates without erythrocytes and blood pigment (1954) Nature, 173, pp. 848-850
Scott, N.L., Falzone, C.J., Vuletich, D.A., Zhao, J., Bryant, D.A., Lecomte, J.T., Truncated hemoglobin from the cyanobacterium Synechococcus sp. PCC 7002: evidence for hexacoordination and covalent adduct formation in the ferric recombinant protein (2002) Biochemistry, 41, pp. 6902-6910
Sidell, B.D., O'Brien, K.M., When bad things happen to good fish: the loss of hemoglobin and myoglobin expression in Antarctic icefishes (2006) J. Exp. Biol., 209, pp. 1791-1802
Smagghe, B.J., Trent III, J.T., Hargrove, M.S., NO dioxygenase activity in hemoglobins is ubiquitos in vitro, but limited by reduction in vivo (2008) PloS ONE, 3, pp. e2039
Sowa, A.W., Guy, P.A., Sowa, S., Hill, R.D., Nonsymbiotic haemoglobins in plants (1999) Acta Biochim. Pol., 46, pp. 431-445
Sun, Y., Jin, K., Mao, X.O., Zhu, Y., Greenberg, D.A., Neuroglobin is upregulated by and protects neurons from hypoxic-ischemic injury (2001) Proc. Natl. Acad. Sci. U.S.A., 98, pp. 15306-15311
Sun, Y., Jin, K., Peel, A., Mao, X.O., Xie, L., Greenberg, D.A., Neuroglobin protects the brain from experimental stroke in vivo (2003) Proc. Natl. Acad. Sci. U.S.A., 100, pp. 3497-3500
Vallone, B., Nienhaus, K., Brunori, M., Nienhaus, G.U., The structure of murine neuroglobin: novel pathways for ligand migration and binding (2004) Proteins: Struct. Funct. Bioinf., 56, pp. 85-92
Verde, C., Parisi, E., di Prisco, G., The evolution of thermal adaptation in polar fish (2006) Gene, 385, pp. 137-145
Verde, C., Vergara, A., Mazzarella, L., di Prisco, G., The hemoglobins of fishes living at polar latitudes - current knowledge on structural adaptations in a changing environment (2008) Curr. Protein Pept. Sci., 9, pp. 578-590
Vergara, A., Franzese, M., Merlino, A., Vitagliano, L., di Prisco, G., Verde, C., Lee, H.C., Mazzarella, L., Structural characterization of ferric hemoglobins from three Antarctic fish species of the suborder Notothenioidei (2007) Biophys. J., 93, pp. 2822-2829
Vergara, A., Vitagliano, L., Verde, C., di Prisco, G., Mazzarella, L., Spectroscopic and crystallographic characterization of bis-histidyl adducts in tetrameric hemoglobins (2008) Methods Enzymol., 436, pp. 425-444
Vinogradov, S., Moens, L., Diversity of globin function: enzymatic, transport, storage, and sensing (2008) J. Biol. Chem., 283, pp. 8773-8777
Vinogradov, S., Hoogewijs, D., Bailly, X., Arredondo-Peter, R., Gough, J., Dewilde, S., Moens, L., Vanfleteren, J., Three globin lineages belonging to two structural classes in genomes from the three kingdoms of life (2005) Proc. Natl. Acad. Sci. U.S.A., 102, pp. 11385-11389
Visca, P., Fabozzi, G., Petrucca, A., Ciaccio, C., Coletta, M., De Sanctis, G., Bolognesi, M., Ascenzi, P., The truncated hemoglobin from Mycobacterium leprae (2002) Biochem. Biophys. Res. Commun., 294, pp. 1064-1070
Vitagliano, L., Bonomi, G., Riccio, A., di Prisco, G., Smulevich, G., Mazzarella, L., The oxidation process of Antarctic fish hemoglobins (2004) Eur. J. Biochem., 271, pp. 1651-1659
Vitagliano, L., Vergara, A., Bonomi, G., Merlino, A., Smulevich, G., Howes, B., di Prisco, G., Mazzarella, L., Spectroscopic and crystallographic analysis of a tetrameric hemoglobin oxidation pathway reveals features of an intermediate R/T state (2008) J. Am. Chem. Soc., 130, pp. 10527-10535
Vuletich, D.A., Lecomte, J.T., A phylogenetic and structural analysis of truncated hemoglobins (2006) J. Mol. Evol., 62, pp. 196-210
Wajcman, H., Kiger, L., Hemoglobin, from microorganisms to man: a single structural motif, multiple functions (2002) C. R. Biol., 325, pp. 1159-1174. , (Article in French)
Wakasugi, K., Nakano, T., Morishima, I., Oxidized human neuroglobin acts as a heterotrimeric Gα protein guanine nucleotide dissociation inhibitor (2003) J. Biol. Chem., 278, pp. 36505-36512
Watanabe, S., Wakasugi, K., Zebrafish neuroglobin is a cell-membrane-penetrating globin (2008) Biochemistry, 47, pp. 5266-5270
Watts, R.A., Hunt, P.W., Hvitved, A.N., Hargrove, M.S., Peacock, W.J., Dennis, E.S., A hemoglobin from plants homologous to truncated hemoglobins of microorganisms (2001) Proc. Natl. Acad. Sci. U.S.A., 98, pp. 10119-10124
Weiland, T.R., Kundu, S., Trent III, J.T., Hoy, J.A., Hargrove, M.S., Bis-Histidyl Hexacoordination in hemoglobins facilitates heme reduction kinetics (2004) J. Am. Chem. Soc., 126, pp. 11930-11935
Wittenberg, J.B., Bolognesi, M., Wittenberg, B.A., Guertin, M., Truncated hemoglobins: a new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants (2002) J. Biol. Chem., 277, pp. 871-874
Cheng, C. H., di Prisco, G., Verde, C., The "icefish paradox". Which is the task of neuroglobin in Antarctic hemoglobin-less icefish? (2009) IUBMB Life, 61, pp. 184-188
Detta, A., di Prisco, G., Lecointre, G., Parisi, E., Verde, C., Inferring evolution of fish proteins: the globin case study (2008) Methods Enzymol., 436, pp. 539-570
Eastman, J. T., (1993) Antarctic Fish Biology: Evolution in a Unique Environment, , Academic Press, San Diego, CA
Falzone, C. J., Christie Vu, B., Scott, N. L., Lecomte, J. T., The solution structure of the recombinant hemoglobin from the cyanobacterium Synechocystis sp. PCC 6803 in its hemichrome state (2002) J. Mol. Biol., 324, pp. 1015-1029
Gardner, P. R., Gardner, A. M., Martin, L. A., Salzman, A. L., Nitric oxide dioxygenase: an enzymic function for flavohemoglobin (1998) Proc. Natl. Acad. Sci. U. S. A., 95, pp. 10378-10383
Garry, D. J., Ordway, G. A., Lorenz, J. N., Radford, N. B., Chin, E. R., Grange, R. W., Bassel-Duby, R., Williams, R. S., Mice without myoglobin (1998) Nature, 395, pp. 905-908
G decke, A., Fl gel, U., Zanger, K., Ding, Z., Hirchenhain, J., Decking, U. K. M., Schrader, J., Disruption of myoglobin in mice induces multiple compensatory mechanisms (1999) Proc. Natl. Acad. Sci. U. S. A., 96, pp. 10495-10500
Greenberg, D. A., Jin, K., Khan, A. A., Neuroglobin: an endogenous neuroprotectant (2008) Curr. Opin. Pharmacol., 8, pp. 20-24
Hargrove, M. S., Brucker, E. A., Stec, B., Sarath, G., Arredondo-Peter, R., Klucas, R. V., Olson, J. S., Phillips, G. N., Crystal structure of a nonsymbiotic plant hemoglobin (2000) Structure, 8, pp. 1005-1014
Holland, H. D., The oxygenation of the atmosphere and oceans (2006) Philos. Trans. R. Soc., B361, pp. 903-916
Hoy, J. A., Kundu, S., Trent III, J. T., Ramaswamy, S., Hargrove, M. S., The crystal structure of Synechocystis hemoglobin with a covalent heme linkage (2004) J. Biol. Chem., 279, pp. 16535-16542
Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H., Phillips, D. C., A three-dimensional model of the myoglobin molecule obtained by X-ray analysis (1958) Nature, 181, pp. 662-666
Kriegl, J. M., Bhattacharyya, A. J., Nienhaus, K., Deng, P., Minkow, O., Nienhaus, G. U., Ligand binding and protein dynamics in neuroglobin (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 7992-7997
M digue, C., Krin, E., Pascal, G., Barbe, V., Bernsel, A., Bertin, P. N., Cheung, F., Danchin, A., Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125 (2005) Genome Res., 15, pp. 1325-1335
Minning, D. M., Gow, A. J., Bonaventura, J., Braun, R., Dewhirst, M., Goldberg, D. E., Stamler, J. S., Ascaris haemoglobin is a nitric oxide-activated "deoxygenase" (1999) Nature, 401, pp. 497-502
Mitchell, D. T., Kitto, G. B., Hackert, M. L., Structural analysis of monomeric hemichrome and dimeric cyanomet hemoglobins from Caudina arenicola (1995) J. Mol. Biol., 251, pp. 421-431
Perutz, M. F., Species adaptation in a protein molecule (1983) Mol. Biol. Evol., 1, pp. 1-28
Perutz, M. F., Kendrew, J. C., Watson, H. C., Structure and function of haemoglobin. II. Some relations between polypeptide chain configuration and amino acid sequence (1965) J. Mol. Biol., 13, pp. 669-678
Perutz, M. F., Fermi, G., Luisi, B., Shanan, B., Liddington, R. C., Stereochemistry of cooperative mechanisms in hemoglobin (1987) Acc. Chem. Res., 20, pp. 309-321
Poole, R. K., Nitric oxide and nitrosative stress tolerance in bacteria (2005) Biochem. Soc. Trans., 33, pp. 176-180
Rifkind, J. M., Abugo, O., Levy, A., Heim, J. M., Detection, formation, and relevance of hemichrome and hemochrome (1994) Methods Enzymol., 231, pp. 449-480
Robinson, V. L., Smith, B. B., Arnone, A., A pH-dependent aquomet-to-hemichrome transition in crystalline horse methemoglobin (2003) Biochemistry, 42, pp. 10113-10125
Ruud, J. T., Vertebrates without erythrocytes and blood pigment (1954) Nature, 173, pp. 848-850
Scott, N. L., Falzone, C. J., Vuletich, D. A., Zhao, J., Bryant, D. A., Lecomte, J. T., Truncated hemoglobin from the cyanobacterium Synechococcus sp. PCC 7002: evidence for hexacoordination and covalent adduct formation in the ferric recombinant protein (2002) Biochemistry, 41, pp. 6902-6910
Sidell, B. D., O'Brien, K. M., When bad things happen to good fish: the loss of hemoglobin and myoglobin expression in Antarctic icefishes (2006) J. Exp. Biol., 209, pp. 1791-1802
Smagghe, B. J., Trent III, J. T., Hargrove, M. S., NO dioxygenase activity in hemoglobins is ubiquitos in vitro, but limited by reduction in vivo (2008) PloS ONE, 3, pp. e2039
Sowa, A. W., Guy, P. A., Sowa, S., Hill, R. D., Nonsymbiotic haemoglobins in plants (1999) Acta Biochim. Pol., 46, pp. 431-445
Vuletich, D. A., Lecomte, J. T., A phylogenetic and structural analysis of truncated hemoglobins (2006) J. Mol. Evol., 62, pp. 196-210
Watts, R. A., Hunt, P. W., Hvitved, A. N., Hargrove, M. S., Peacock, W. J., Dennis, E. S., A hemoglobin from plants homologous to truncated hemoglobins of microorganisms (2001) Proc. Natl. Acad. Sci. U. S. A., 98, pp. 10119-10124
Weiland, T. R., Kundu, S., Trent III, J. T., Hoy, J. A., Hargrove, M. S., Bis-Histidyl Hexacoordination in hemoglobins facilitates heme reduction kinetics (2004) J. Am. Chem. Soc., 126, pp. 11930-11935
Wittenberg, J. B., Bolognesi, M., Wittenberg, B. A., Guertin, M., Truncated hemoglobins: a new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants (2002) J. Biol. Chem., 277, pp. 871-874
Arnold, E.V., Bohle, D.S., Jordan, P.A., Observation of myoglobin hemichromes (1999) Book of Abstracts, 217th ACS National Meeting, Anaheim, Calif., March 21-25, , INOR-39
Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E., The Protein Data Bank (2000) Nucl. Ac. Res., 28, pp. 235-242
de Sanctis, D., Pesce, A., Nardini, M., Bolognesi, M., Bocedi, A., Ascenzi, P., Structure-function relationships in the growing hexa-coordinate hemoglobin sub-family (2004) IUBMB Life, 56, pp. 643-651
Dokmanic, I., Sikic, M., Tomic, S., Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination (2008) Acta Crystallogr., D. Biol. Crystallogr., 64, pp. 257-263
Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., Liang, J., CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues (2006) Nucl. Ac. Res., pp. W116-W118
Galstyan, A.S., Zaric, S.D., Knapp, E.W., Computational studies on imidazole heme conformations (2005) J. Biol. Inorg. Chem., 10, pp. 343-354
Ma, J.G., Laberge, M., Song, X.Z., Jentzen, W., Jia, S.L., Zhang, J., Vanderkooi, J.M., Shelnutt, J.A., Protein-induced changes in nonplanarity of the porphyrin in nickel cytochrome c probed by resonance Raman spectroscopy (1998) Biochemistry, 37, pp. 5118-5128
Menyhard, D.K., Keseru, G.M., Stereoelectronic control on the coordination of substrates to globin proteins. The role of proximal His93 on the NO release from myoglobin [10] (1998) J. Am. Chem. Soc., 120, pp. 7991-7992
Mitchell, D.T., Ernst, S.R., Wu, W., Hackert, M., Three-dimensional structure of a hemichrome hemoglobin from Caudina arenicola (1995) Acta Crystallogr. D, 51, pp. 647-653
Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C., SCOP: a structural classification of proteins database for the investigation of sequences and structures (1995) J. Mol. Biol., 247, pp. 536-540
Pesce, A., De Sanctis, D., Nardini, M., Dewilde, S., Moens, L., Hankeln, T., Burmester, T., Bolognesi, M., Reversible hexa- to penta-coordination of the heme Fe atom modulates ligand binding properties of neuroglobin and cytoglobin (2004) IUBMB Life, 56, pp. 657-664
Rakic, A.A., Medakovic, V.B., Zaric, S.D., Orientations of axially coordinated imidazoles and pyridines in crystal structures of model systems of cytochromes (2006) J. Inorg. Biochem., 100, pp. 133-142
Reedy, C.J., Elvekrog, M.M., Gibney, B.R., Development of a heme protein structure-electrochemical function database (2008) Nucleic Acids Res., 36, pp. D307-D313
Reuss, S., Saaler-Reinhardt, S., Weich, B., Wystub, S., Reuss, M.H., Burmester, T., Hankeln, T., Expression analysis of neuroglobin mRNA in rodent tissues (2002) Neuroscience, 115, pp. 645-656
Shelnutt, J.A., Rousseau, D.L., Dethmers, J.K., Margoliashi, E., Protein influence on the heme in cytochrome c: evidence from Raman difference spectroscopy (1979) Proc. Natl. Acad. Sci. U. S. A., 76, pp. 3865-3869
Walker, F.A., Magnetic spectroscopic (EPR, ESEEM, Mossbauer, MCD and NMR) studies of low-spin ferriheme centers and their corresponding heme proteins (1999) Coord. Chem. Rev., 186, pp. 471-534
Walker, F.A., Models of the bis-histidine-ligated electron-transferring cytochromes. Comparative geometric and electronic structure of low-spin ferro- and ferrihemes (2004) Chem. Rev., 104, pp. 589-615
Zaric, S.D., Popovic, D.M., Knapp, E.W., Factors determining the orientation of axially coordinated imidazoles in heme proteins (2001) Biochemistry, 40, pp. 7914-7928
Zhou, S., Olson, J.S., Fabian, M., Weiss, M.J., Gow, A.J., Biochemical fates of a hemoglobin bound to a hemoglobin-stabilizing protein AHSP (2006) J. Biol. Chem., 281, pp. 32611-32618
Hemoproteins in the cold
The properties of hemoproteins strictly depend on the type and orientation of axial ligands. Here, the orientations of axially coordinated His in bis-His complexes and the heme geometry in protein data bank have been analyzed. The effect of the bis-histidyl formation on the heme cavity of Antarctic fish hemoglobins has been also evaluated. The results show that protein matrix exerts a major effect on the conformation of axially ligated histidines: the imidazoles in bis-His complexes occupy a preferred relative orientation in globins and in model systems, whereas they adopt a variety of relative orientations in other hemoproteins. The bis-histidyl adducts affect the heme geometry inducing larger distortions from planarity with respect to other ligands. These deviations are larger in bis-His multiheme cytochromes than in globins. In Antarctic fish hemoglobins the bis-histidyl adduct adopts preferentially a distorted coordination and the formation of the bis-His complex induces a slight but significant modification in the shape, area and volume of the heme cavity. (C) 2009 Elsevier B.V. All rights reserved.