Keywords: Amyloidosis, Cellular Prion Protein, Conformational Disorders, Misfolding, Scrapie Prion Isoform, Transmissible Spongiform Encephalopathies, Cell Protein, Metal Ion, Peptide Derivative, Peptide Fragment, Alpha Helix, Amino Acid Sequence, Amino Acid Substitution, Amino Terminal Sequence, Beta Sheet, Brain Spongiosis, Carboxy Terminal Sequence, Human, Huntington Chorea, Metal Binding, Nerve Cell Degeneration, Neurotoxicity, Non Insulin Dependent Diabetes Mellitus, Nonhuman, Parkinson Disease, Point Mutation, Protein Conformation, Protein Domain, Protein Folding, Protein Function, Protein Interaction, Protein Structure, Review, Structure Analysis, Thermodynamics, Titrimetry,
Affiliations: *** IBB - CNR ***
Dipartimento Delle Scienze Biologiche, C.I.R.Pe.B., Università Federico II, Naples 80134, Italy
References: Aronoff-Spencer, E., Burns, C.S., Avdievich, N.I., Gerfen, G.J., Peisach, J., Antholine, W.E., Ball, H.L., Millhauser, G.L., Identification of the Cu2+ binding sites in the N-terminal domain of the prion protein by EPR and CD spectroscopy (2000) Biochemistry, 39, pp. 13760-1377
Arora, A., Ha, C., Park, C.B., Inhibition of insulin amyloid formation by small stress molecules (2004) FEBS Lett, 564, pp. 121-125
Barducci, A., Chelli, R., Procacci, P., Schettino, V., Misfolding pathways of the prion protein probed by molecular dynamics simulations (2005) Biophys J, 88, pp. 1334-1343
Blake, C., Serpell, L., Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous beta-sheet helix (1996) Structure, 4, pp. 989-998
Booth, D.R., Sunde, M., Bellotti, V., Robinson, C.V., Hutchinson, W.L., Fraser, P.E., Hawkins, P.N., Pepys, M.B., Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis (1997) Nature, 385, pp. 787-793
Borchelt, D.R., Taraboulos, A., Prusiner, S.B., Evidence for synthesis of scrapie prion proteins in the endocytic pathway (1992) J Biol Chem, 267, pp. 16188-16199
Bosques, C.J., Imperiali, B., The interplay of glycosylation and disulfide formation influences fibrillization in a prion protein fragment (2003) Proc Natl Acad Sci USA, 100, pp. 7593-7598
Brown, D.R., Qin, K., Herms, J.W., Madlung, A., Manson, J., Strome, R., Fraser, P.E., Kretzschmar, H., The cellular prion protein binds copper in vivo (1997) Nature, 390, pp. 684-687
Brown, D.R., Guantieri, V., Grasso, G., Impellizzeri, G., Pappalardo, G., Rizzarelli, E., Copper(II) complexes of peptide fragments of the prion protein. Conformation changes induced by copper(II) and the binding motif in C-terminal protein region. J. Inorg (2004) Biochem, 98, pp. 133-143
Bryce, G.F., Gurd, F.R.N., Visible spectra and optical rotatory properties of cupric ion complexes of L-histidine-containing peptides (1966) J Biol Chem, 241, pp. 122-129
Burns, C.S., Aronoff-Spencer, E., Dunham, C.M., Lario, P., Avdievich, N.I., Antholine, W.E., Olmstead, M.M., Millhauser, G.L., Molecular features of the copper binding sites in the octarepeat domain of the prion protein (2002) Biochemistry, 41, pp. 3991-4001
Bütefisch, C.M., Gambetti, P., Cervenakova, L., Park, K.-Y., Hallett, M., Goldfarb, L.G., Inherited prion encephalopathy associated with the novel PRNP H187R mutation: A clinical study (2000) Neurology, 55, pp. 517-522
Calzolai, L., Zahn, R., Influence of pH on NMR structure and stability of the human prion protein globular domain (2003) Journal of Biological Chemistry, 278 (37), pp. 35592-35596. , DOI 10.1074/jbc.M303005200
Calzolai, L., Lysek, D.A., Perez, D.R., Guntert, P., Wuthrich, K., Prion protein NMR structures of chickens, turtles, and frogs (2005) Proceedings of the National Academy of Sciences of the United States of America, 102 (3), pp. 651-655. , DOI 10.1073/pnas.0408939102
Caughey, B., Lansbury, P.T., Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders (2003) Annu Rev Neurosci, 26, pp. 267-298
Cereghetti, G.M., Schweiger, A., Glockshuber, R., Van Doorslaer, S., Stability and Cu(II) binding of prion protein variants related to inherited human prion diseases (2003) Biophys J, 84, pp. 1985-1997
Cervenakova, L., Buetefisch, C., Lee, H.S., Taller, I., Stone, G., Gibbs Jr, C.J., Brown, P., Goldfarb, L.G., Novel PRNP sequence variant associated with familial encephalopathy (1999) Am J Med Genet, 88, pp. 653-656
Chen, Y.R., Huang, H.B., Chyan, C.L., Shiao, M.S., Lin, T.H., Chen, Y.C., The effect of A{beta} conformation on the metal affinity and aggregation mechanism studied by circular dichroism spectroscopy (2006) J Biochem Tokyo, 139, pp. 733-740
Chesebro, B., Trifilo, M., Race, R., Meade-White, K., Teng, C., Lacasse, R., Raymond, L., Oldstone, M., Anchorless prion protein results in infectious amyloid disease without clinical scrapie (2005) Science, 308, pp. 1435-1439
Christen, B., Pérez, D.R., Hornemann, S., Wüthrich, K., NMR structure of the bank vole prion protein at 20°C contains a structured loop of residues 165-171 (2008) J Mol Biol, 383, pp. 306-312
Cobb, N.J., Sönnichsen, F.D., McHaourab, H., Surewicz, W.K., Molecular architecture of human prion protein amyloid: A parallel., in-register beta-structure (2007) Proc Natl Acad Sci USA, 104, pp. 18946-18951
Cobb, N.J., Apetri, A.C., Surewicz, W.K., Prion amyloid formation under native-like condictions involves refolding of the C-terminal α-helical domain (2008) J Biol Chem, 283, pp. 34704-34711
Collins, K.D., Charge density-dependent strength of hydration and biological structure (1997) Biophys J, 72, pp. 65-76
Collins, K.D., Ions from the Hofmeister series and osmolytes: Effects on proteins in solution and in the crystallization process (2004) Methods, 34, pp. 300-311
Cordeiro, Y., Kraineva, J., Gomes, M.P., Lopes, M.H., Martins, V.R., Lima, L.M., Foguel, D., Silva, J.L., The amino-terminal PrP domain is crucial to modulate prion misfolding and aggregation (2005) Biophys J, 89, pp. 2667-2676
Fioriti, L., Quaglio, E., Massignan, T., Colombo, L., Stewart, R.S., Salmona, M., Harris, D.A., Chiesa, R., The neurotoxicity of prion protein (PrP) peptide 106-126 is independent of the expression level of PrP and is not mediated by abnormal PrP species (2005) Mol Cell Neurosci, 28, pp. 165-176
Fitzmaurice, T.J., Burke, D.F., Hopkins, L., Yang, S., Yu, S., Sy, M.-S., Thackray, A.M., Bujdoso, R., The stability and aggregation of ovine prion protein associated with classical and atypical scrapie correlates with the ease of unwinding of helix-2 (2008) Biochem J, 409, pp. 367-375
Forloni, G., Angeretti, N., Chiesa, R., Monzani, E., Salmona, M., Bugiani, O., Tagliavini, F., Neurotoxicity of a prion protein fragment (1993) Nature, 362, pp. 543-546
Frankenfield, K.N., Powers, E.T., Kelly, J.W., Influence of the N-terminal domain on the aggregation properties of the prion protein (2005) Protein Sci, 14, pp. 2154-2166
Gaggelli, E., Kozlowski, H., Valensin, D., Valensin, G., Copper homeostasis and neurodegenerative disorders (Alzheimer's, prion, and Parkinson's diseases and amyotrophic lateral sclerosis) (2006) Chem Rev, 160, pp. 1995-2044
Gallo, M., Paludi, D., Cicero, D.O., Chiovitti, K., Millo, E., Salis, A., Damonte, G., Aceto, A., Identification of a conserved N-capping box important for the structural autonomy of the prion alpha 3-helix: The disease associated D202N mutation destabilizes the helical conformation (2005) Int J Immunopathol Pharmacol, 18, pp. 95-112
Gasset, M., Baldwin, M.A., Lloyd, D.H., Gabriel, J.-M., Holtzman, D.M., Cohen, F., Fletterick, R., Prusiner, S.B., Predicted alpha-helical regions of the prion protein when synthesized as peptides form amyloid (1992) Proc Natl Acad Sci USA, 89, pp. 10940-10944
Gu, Y., Fujioka, H., Mishra, R.S., Li, R., Singh, N., Prion peptide 106-126 modulates the aggregation of cellular prion protein and induces the synthesis of potentially neurotoxic transmembrane PrP (2002) J Biol Chem, 277, pp. 2275-2286
Haire, L.F., Whyte, S.M., Vasisht, N., Gill, A.C., Verma, C., Dodson, E.J., Dodson, G.G., Bayley, P.M., The crystal structure of the globular domain of sheep prion protein (2004) J Mol Biol, 336, pp. 1175-1183
Hirschberger, T., Stork, M., Schropp, B., Winklhofer, K.F., Tatzelt, J., Tavan, P., Structural instability of the prion protein upon M205S/R mutations revealed by molecular dynamics simulations (2006) Biophys J, 90, pp. 3908-3918
Hornemann, S., Glockshuber, R., A scrapie-like unfolding intermediate of the prion protein domain PrP(121-231) induced by acidic pH (1998) Proc Natl Acad Sci USA, 95, pp. 6010-6014
Horwich, A., Protein aggregation in disease: A role for folding intermediates forming specific multimeric interactions (2002) J Clin Invest, 110, pp. 1221-1232
Huang, Z., Prusiner, S.B., Cohen, F.E., Scrapie prions: A three-dimensional model of an infectious fragment (1996) Fold des, 1, pp. 13-19
Ikeda, K., Higo, J., Free-energy landscape of a chameleon sequence in explicit water and its inherent alpha/beta bifacial property (2003) Protein Sci, 12, pp. 2542-2548
Jackson, G.S., Hosszu, L.L.P., Power, A., Hill, A.F., Kenney, J., Saibil, H., Craven, C.J., Collinge, J., Reversible inter-conversion of monomeric human prion protein between native and fibrilogenic conformations (1999) Science, 283, pp. 1935-1937
Jobling, M.F., Stewart, L.R., White, A.R., McLean, C., Friedhuber, A., Maher, F., Beyreuther, K., Cappai, R., The hydrophobic core sequence modulates the neurotoxic and secondary structure properties of the prion peptide 106-126 (1999) J Neurochem, 73, pp. 1557-1565
Jobling, M.F., Huang, X., Stewart, L.R., Barnham, K.J., Curtain, C., Volitakis, I., Perugini, M., Cappai, R., Copper and zinc binding modulates the aggregation and neurotoxic properties of the prion peptide PrP106-126 (2001) Biochemistry, 40, pp. 8073-8084
Kawatake, S., Nishimura, Y., Sakaguchi, S., Iwaki, T., Doh-Ura, K., Surface plasmon resonance analysis for the screening of anti-prion compounds (2006) Biol Pharm Bull, 29, pp. 927-932
Kiachopoulos, S., Bracher, A., Winklhofer, K.F., Tatzelt, J., Pathogenic mutations located in the hydrophobic core of the prion protein interfere with folding and attachment of the glycosylphosphatidylinositol anchor (2005) J Biol Chem, 280, pp. 9320-9329
Knaus, K.J., Morillas, M., Swietnicki, W., Malone, M., Surewicz, W.K., Yee, V.C., Crystal structure of the human prion protein reveals a mechanism for oligomerization (2001) Nat Struct Biol, 8, pp. 770-774
Kramer, M.L., Kratzin, H.D., Schmidt, B., Römer, A., Windl, O., Liemann, S., Hornemann, S., Kretzschmar, H., Prion protein binds copper within the physiological concentration range (2001) J Biol Chem, 276, pp. 16711-16719
Kuznetsov, I.B., Rackovsky, S., Comparative computational analysis of prion proteins reveals two fragments with unusual structural properties and a pattern of increase in hydrophobicity associated with disease-promoting mutations (2004) Protein Sci, 13, pp. 3230-3244
Langella, E., Improta, R., Barone, V., Checking the pH-induced conformational transition of prion protein by molecular dynamics simulations: Effect of protonation of histidine residues (2004) Biophys J, 87, pp. 3623-3632
Lee, J.C., Gray, H.B., Winkler, J.R., Copper(II) binding to α-synuclein, the Parkinson's protein (2008) J Am Chem Soc, 130, pp. 6898-6899
Lippard, S.J., Berg, J.M., (1994) Principles of Bioinorganic Chemistry, pp. 237-242. , University Science Books, Mill Valley 297-302
Liu, A., Riek, R., Zahn, R., Hornemann, S., Glockshuber, R., Wuthrich, K., Peptides and proteins in neurodegenerative disease: Helix propensitiy of a polypeptide containing helix 1 of the mouse prion protein studied by NMR and CD spectroscopy (1999) Biopolymers, 51, pp. 145-152
Lu, X., Wintrode, P.L., Surewicz, W.K., Beta-sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium exchange (2007) Proc Natl Acad Sci USA, 104, pp. 1510-1515
Luczkowski, M., Kozlowski, H., Stawikowski, M., Rolka, K., Gaggelli, E., Valensin, D., Valensin, G., Is a monomeric prion octapeptide repeat PHGGGWGQ specific ligand for Ca2+ ions? (2002) J Chem Soc Dalton Trans, (11), pp. 2269-2274
Millhauser, G.L., Copper and the prion protein: Methods, structures, function, and disease (2007) Annu Rev Phys Chem, 58, pp. 299-320
Minor Jr, D.L., Kim, P.S., Measurement of the beta-sheet forming propensities of amino acids (1994) Nature, 367, pp. 660-663
Nandi, P.K., Nicole, J.C., Nucleic acid and prion protein interaction produces spherical amyloids which can function in vivo as coats of spongiform encephalopathy agent (2004) J Mol Biol, 344, pp. 827-837
Niedz, R.P., Evens, T.J., A solution to the problem of ion confounding in experimental biology (2006) Nat Methods, 3, p. 417
Pan, K.-H., Baldwin, M., Nguyen, J., Gasset, M., Serban, A., Groth, D., Mehlhorn, I., Prusiner, S.B., Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins (1993) Proc Natl Acad Sci USA, 90, pp. 10962-10966
Prusiner, S.B., Prions (1998) Proc Natl Acad Sci USA, 95, pp. 13363-13383
Qin, K., Yang, Y., Mastrangelo, P., Westaway, D., Mapping Cu(II) binding sites in prion proteins by diethyl pyrocarbonate modification and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometric footprinting (2002) J Biol Chem, 277, pp. 1981-1990
Quaglio, E., Chiesa, R., Harris, D.A., Copper converts the cellular prion protein into a protease-resistant species that is distinct from the scrapie isoform (2001) J Biol Chem, 276, pp. 11432-11438
Ricchelli, F., Buggio, R., Drago, D., Salmona, M., Forloni, G., Negro, A., Tognon, G., Zatta, P., Aggregation/fibrillogenesis of recombinant human prion protein and Gerstmann-Straussler-Scheinker disease peptides in the presence of metal ions (2006) Biochemistry, 45, pp. 6724-6732
Riek, R., Wider, G., Billeter, M., Hornemann, S., Glockshuber, R., Wütrich, K., Free-energy landscape of a chameleon sequence in explicit water and its inherent alpha/beta bifacial property (1998) Proc Natl Acad Sci USA, 95, pp. 11667-11672
Roberts, M.F., Organic compatible solutes of halotolerant and halophilic microorganisms (2005) Saline Syst, 1, pp. 1-30
Ronga, L., Tizzano, B., Palladino, P., Ragone, R., Urso, E., Maffia, M., Ruvo, M., Rossi, F., The prion protein: Structural features and related toxic peptides (2006) Chem Biol Drug des, 68, pp. 139-147
Ronga, L., Palladino, P., Tizzano, B., Marasco, D., Benedetti, E., Ragone, R., Rossi, F., Effect of salts on the structural behavior of hPrP alpha2-helix-derived analogues: The counterion perspective (2006) J Pept Sci, 12, pp. 790-795
Ronga, L., Langella, E., Palladino, P., Marasco, D., Tizzano, B., Saviano, M., Pedone, C., Ruvo, M., Does tetracycline bind helix 2 of prion? An integrated spectroscopical and computational study of the interaction between the antibiotic and alpha helix 2 human prion protein fragments (2007) Proteins, 66, pp. 707-715
Salmona, M., Morbin, M., Massignan, T., Colombo, L., Mazzoleni, G., Capobianco, R., Diomede, L., Tagliavini, F., Structural properties of Gerstmann-Straussler-Scheinker disease amyloid protein (2003) J Biol Chem, 278, pp. 48146-48153
Shaked, G.M., Shaked, Y., Kariv-Inbal, Z., Halimi, M., Avraham, I., Gabizon, R.A., Protease-resistant prion protein isoform is present in urine of animals and humans affected with prion diseases (2001) J Biol Chem, 276, pp. 31479-31482
Stahl, N., Borchelt, D.R., Hsiao, K., Prusiner, S.B., Scrapie prion protein contains a phosphatidylinositol glycolipid (1987) Cell, 51, pp. 229-240
Sundberg, R.J., Martin, R.B., Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological systems (1974) Chem Rev, 74, pp. 471-517
Sunde, M., Serpell, L.C., Bartlam, M., Fraser, P.E., Pepys, M.B., Blake, C.C.F., Common core structure of amyloid fibrils by synchrotron X-ray diffraction (1997) Journal of Molecular Biology, 273 (3), pp. 729-739. , DOI 10.1006/jmbi.1997.1348
Swietnicki, W., Petersen, R., Gambetti, P., Surewicz, W.K., PH-dependent stability and conformation of the recombinant human prion protein PrP(90-231) (1997) J Biol Chem, 272, pp. 27517-27520
Swietnicki, W., Morillas, M., Chen, S.G., Gambetti, P., Surewicz, W.K., Aggregation and fibrillization of the recombinant human prion protein huPrP90-231 (2000) Biochemistry, 39, pp. 424-431
Tagliavini, F., Forloni, G., Colombo, L., Rossi, G., Girala, L., Canciani, B., Angeretti, N., Salmona, M., Tetracycline affects abnormal properties of synthetic PrP peptides and PrP(Sc) in vitro (2000) J Mol Biol, 300, pp. 1309-1322
Tan, S.Y., Pepys, M.B., (1994) Amyloidosis Histopathology, 25, pp. 403-414
Temussi, P.A., Masino, L., Pastore, A., From Alzheimer to Huntington: Why is a structural understanding so difficult? (2003) EMBO J, 22, pp. 355-361
Thompson, A., White, A.R., McLean, C., Masters, C.L., Cappai, R., Barrow, C.J., Amyloidogenicity and neurotoxicity of peptides corresponding to the helical regions of PrP(C) (2000) J Neurosci Res, 62, pp. 293-301
Welker, E., Raymond, L.D., Scheraga, H.A., Caughey, B., Intramolecular versus intermolecular disulfide bonds in prion proteins (2002) J Biol Chem, 277, pp. 33477-33481
Winklhofer, K.F., Heske, J., Heller, U., Reintjes, A., Muranyi, I.M., Tatzelt, J., Determinants of the in vivo folding of the prion protein. A bipartite function of helix 1 in folding and aggregation (2003) J Biol Chem, 278, pp. 14961-14970
Wong, C., Xiong, L.W., Horiuchi, M., Raymond, L., Wehrly, K., Chesebro, B., Caughey, B., Sulfated glycans and elevated temperature stimulate PrP(Sc)-dependent cell-free formation of protease-resistant prion protein (2001) EMBO J, 20, pp. 377-386
Wopfner, F., Weidenhöfer, G., Schneider, R., Von Brunn, A., Gilch, S., Schwarzl, T.F., Werner, T., Schätz, H.M., Analysis of 27 mammalian and 9 avian PrPs reveals high conservation of flexible regions of the prion protein (1999) J Mol Biol, 289, pp. 1163-1178
Yamaguchi, K., Matsumoto, T., Kuwata, K., Critical region for amyloid fibril formation of mouse prion protein: Unusual amyloidogenic properties of the helix 2 peptide (2008) Biochemistry, 47, pp. 13242-13251
Yamin, G., Glaser, C.B., Uversky, V.N., Fink, A.L., Certain metals trigger fibrillation of methionine-oxidized α-synuclein (2003) J Biol Chem, 278, pp. 27630-27635
Ziegler, J., Sticht, H., Marx, U.C., Muller, W., Rosch, P., Schwarzinger, S., CD and NMR studies of prion protein (PrP) helix 1. Novel implications for its role in the PrPC → PrPSc conversion process (2003) J Biol Chem, 278, pp. 50175-50181
Zou, W.-Q., Cashman, N.R., Acidic pH and detergents enhance in vitro conversion of human brain PrPC to a PrPSc-like form (2002) J Biol Chem, 277, pp. 43942-43947
Booth, D. R., Sunde, M., Bellotti, V., Robinson, C. V., Hutchinson, W. L., Fraser, P. E., Hawkins, P. N., Pepys, M. B., Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis (1997) Nature, 385, pp. 787-793
Borchelt, D. R., Taraboulos, A., Prusiner, S. B., Evidence for synthesis of scrapie prion proteins in the endocytic pathway (1992) J Biol Chem, 267, pp. 16188-16199
Bosques, C. J., Imperiali, B., The interplay of glycosylation and disulfide formation influences fibrillization in a prion protein fragment (2003) Proc Natl Acad Sci USA, 100, pp. 7593-7598
Brown, D. R., Qin, K., Herms, J. W., Madlung, A., Manson, J., Strome, R., Fraser, P. E., Kretzschmar, H., The cellular prion protein binds copper in vivo (1997) Nature, 390, pp. 684-687
Brown, D. R., Guantieri, V., Grasso, G., Impellizzeri, G., Pappalardo, G., Rizzarelli, E., Copper (II) complexes of peptide fragments of the prion protein. Conformation changes induced by copper (II) and the binding motif in C-terminal protein region. J. Inorg (2004) Biochem, 98, pp. 133-143
Bryce, G. F., Gurd, F. R. N., Visible spectra and optical rotatory properties of cupric ion complexes of L-histidine-containing peptides (1966) J Biol Chem, 241, pp. 122-129
Burns, C. S., Aronoff-Spencer, E., Dunham, C. M., Lario, P., Avdievich, N. I., Antholine, W. E., Olmstead, M. M., Millhauser, G. L., Molecular features of the copper binding sites in the octarepeat domain of the prion protein (2002) Biochemistry, 41, pp. 3991-4001
B tefisch, C. M., Gambetti, P., Cervenakova, L., Park, K. -Y., Hallett, M., Goldfarb, L. G., Inherited prion encephalopathy associated with the novel PRNP H187R mutation: A clinical study (2000) Neurology, 55, pp. 517-522
Carrell, R. W., Lomas, D. A., Conformational disease (1997) Lancet, 350, pp. 134-138
Cereghetti, G. M., Schweiger, A., Glockshuber, R., Van Doorslaer, S., Stability and Cu (II) binding of prion protein variants related to inherited human prion diseases (2003) Biophys J, 84, pp. 1985-1997
Chen, Y. R., Huang, H. B., Chyan, C. L., Shiao, M. S., Lin, T. H., Chen, Y. C., The effect of A {beta} conformation on the metal affinity and aggregation mechanism studied by circular dichroism spectroscopy (2006) J Biochem Tokyo, 139, pp. 733-740
Christen, B., P rez, D. R., Hornemann, S., W thrich, K., NMR structure of the bank vole prion protein at 20 C contains a structured loop of residues 165-171 (2008) J Mol Biol, 383, pp. 306-312
Cobb, N. J., S nnichsen, F. D., McHaourab, H., Surewicz, W. K., Molecular architecture of human prion protein amyloid: A parallel., in-register beta-structure (2007) Proc Natl Acad Sci USA, 104, pp. 18946-18951
Cobb, N. J., Apetri, A. C., Surewicz, W. K., Prion amyloid formation under native-like condictions involves refolding of the C-terminal -helical domain (2008) J Biol Chem, 283, pp. 34704-34711
Collins, K. D., Charge density-dependent strength of hydration and biological structure (1997) Biophys J, 72, pp. 65-76
Collins, K. D., Ions from the Hofmeister series and osmolytes: Effects on proteins in solution and in the crystallization process (2004) Methods, 34, pp. 300-311
Fitzmaurice, T. J., Burke, D. F., Hopkins, L., Yang, S., Yu, S., Sy, M. -S., Thackray, A. M., Bujdoso, R., The stability and aggregation of ovine prion protein associated with classical and atypical scrapie correlates with the ease of unwinding of helix-2 (2008) Biochem J, 409, pp. 367-375
Frankenfield, K. N., Powers, E. T., Kelly, J. W., Influence of the N-terminal domain on the aggregation properties of the prion protein (2005) Protein Sci, 14, pp. 2154-2166
Haire, L. F., Whyte, S. M., Vasisht, N., Gill, A. C., Verma, C., Dodson, E. J., Dodson, G. G., Bayley, P. M., The crystal structure of the globular domain of sheep prion protein (2004) J Mol Biol, 336, pp. 1175-1183
Jackson, G. S., Hosszu, L. L. P., Power, A., Hill, A. F., Kenney, J., Saibil, H., Craven, C. J., Collinge, J., Reversible inter-conversion of monomeric human prion protein between native and fibrilogenic conformations (1999) Science, 283, pp. 1935-1937
Jobling, M. F., Stewart, L. R., White, A. R., McLean, C., Friedhuber, A., Maher, F., Beyreuther, K., Cappai, R., The hydrophobic core sequence modulates the neurotoxic and secondary structure properties of the prion peptide 106-126 (1999) J Neurochem, 73, pp. 1557-1565
Jobling, M. F., Huang, X., Stewart, L. R., Barnham, K. J., Curtain, C., Volitakis, I., Perugini, M., Cappai, R., Copper and zinc binding modulates the aggregation and neurotoxic properties of the prion peptide PrP106-126 (2001) Biochemistry, 40, pp. 8073-8084
Knaus, K. J., Morillas, M., Swietnicki, W., Malone, M., Surewicz, W. K., Yee, V. C., Crystal structure of the human prion protein reveals a mechanism for oligomerization (2001) Nat Struct Biol, 8, pp. 770-774
Kramer, M. L., Kratzin, H. D., Schmidt, B., R mer, A., Windl, O., Liemann, S., Hornemann, S., Kretzschmar, H., Prion protein binds copper within the physiological concentration range (2001) J Biol Chem, 276, pp. 16711-16719
Kuznetsov, I. B., Rackovsky, S., Comparative computational analysis of prion proteins reveals two fragments with unusual structural properties and a pattern of increase in hydrophobicity associated with disease-promoting mutations (2004) Protein Sci, 13, pp. 3230-3244
Lee, J. C., Gray, H. B., Winkler, J. R., Copper (II) binding to -synuclein, the Parkinson's protein (2008) J Am Chem Soc, 130, pp. 6898-6899
Lippard, S. J., Berg, J. M., (1994) Principles of Bioinorganic Chemistry, pp. 237-242. , University Science Books, Mill Valley 297-302
Millhauser, G. L., Copper and the prion protein: Methods, structures, function, and disease (2007) Annu Rev Phys Chem, 58, pp. 299-320
Minor Jr, D. L., Kim, P. S., Measurement of the beta-sheet forming propensities of amino acids (1994) Nature, 367, pp. 660-663
Nandi, P. K., Nicole, J. C., Nucleic acid and prion protein interaction produces spherical amyloids which can function in vivo as coats of spongiform encephalopathy agent (2004) J Mol Biol, 344, pp. 827-837
Niedz, R. P., Evens, T. J., A solution to the problem of ion confounding in experimental biology (2006) Nat Methods, 3, p. 417
Pan, K. -H., Baldwin, M., Nguyen, J., Gasset, M., Serban, A., Groth, D., Mehlhorn, I., Prusiner, S. B., Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins (1993) Proc Natl Acad Sci USA, 90, pp. 10962-10966
Prusiner, S. B., Prions (1998) Proc Natl Acad Sci USA, 95, pp. 13363-13383
Roberts, M. F., Organic compatible solutes of halotolerant and halophilic microorganisms (2005) Saline Syst, 1, pp. 1-30
Shaked, G. M., Shaked, Y., Kariv-Inbal, Z., Halimi, M., Avraham, I., Gabizon, R. A., Protease-resistant prion protein isoform is present in urine of animals and humans affected with prion diseases (2001) J Biol Chem, 276, pp. 31479-31482
Sundberg, R. J., Martin, R. B., Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological systems (1974) Chem Rev, 74, pp. 471-517
Tan, S. Y., Pepys, M. B., (1994) Amyloidosis Histopathology, 25, pp. 403-414
Temussi, P. A., Masino, L., Pastore, A., From Alzheimer to Huntington: Why is a structural understanding so difficult? (2003) EMBO J, 22, pp. 355-361
Winklhofer, K. F., Heske, J., Heller, U., Reintjes, A., Muranyi, I. M., Tatzelt, J., Determinants of the in vivo folding of the prion protein. A bipartite function of helix 1 in folding and aggregation (2003) J Biol Chem, 278, pp. 14961-14970
Zou, W. -Q., Cashman, N. R., Acidic pH and detergents enhance in vitro conversion of human brain PrPC to a PrPSc-like form (2002) J Biol Chem, 277, pp. 43942-43947
Peptide Fragment Approach to Prion Misfolding: The Alpha-2 Domain
The mechanism that underlies a multitude of human disorders, including type II diabetes, Parkinson's, Huntington's and Alzheimer's, and the prion encephalopathies, is beta-structure expansion through a pathogenic aggregation-prone monomeric form. beta-sheet expansion disorders share intermolecular association as a common determinant, being therefore collectively identified as conformational diseases, but little is known about the underlying mechanism. Transmissible spongiform encephalopathies, also known as prion diseases, are all characterised by progressive neuronal degeneration associated to marked extracellular accumulation of an amyloidogenic conformer of the normal cellular prion protein (PrP(C)), referred to as the scrapie isoform (PrP(Sc)), which is thought to be responsible for the disease symptoms. PrP(C) is a ubiquitous 231-amino acid glycoprotein, whose physiological role is still elusive. It is organised as an N-terminal disordered region and a compact C-terminal domain, where secondary structure elements consist of three alpha-helices (alpha 1, alpha 2 and alpha 3), with an alpha 2-alpha 3 disulphide bridge, and two short beta-strands (beta 1 and beta 2). Evidence accumulated so far suggests that the protein possesses one or several 'spots' of intrinsic conformational weakness, which may trigger generic folding, leading the whole architecture to adopt aggregation-prone conformations. One of such spots is suspected to be the C-terminal side of the alpha-helix 2, which has recently gained the attention of several investigations because it gathers several disease-associated point mutations, can be strongly fibrillogenic and toxic to neuronal cells, and possesses chameleon conformational behaviour. This paper briefly reviews recent literature on alpha-2 domain-derived model peptides.
Peptide Fragment Approach to Prion Misfolding: The Alpha-2 Domain