Structure and stability of a thioredoxin reductase from Sulfolobus solfataricus: A thermostable protein with two functions(347 views) Ruggiero A, Masullo M, Ruocco MR, Grimaldi P, Lanzotti MA, Arcari P, Zagari A, Vitagliano L
Keywords: Archaea, Cofactor Binding, Nadh Oxidase, Oxidoreductase, Protein Function And Stability, Reduced Nicotinamide Adenine Dinucleotide Dehydrogenase, Thioredoxin Reductase, Article, Circular Dichroism, Crystal Structure, Denaturation, Enzyme Isolation, Enzyme Structure, Priority Journal, Protein Analysis, Protein Stability, Protein Structure, Sulfolobus Solfataricus, Thermostability, Wild Type, Amino Acid Sequence, Binding Sites, Disulfides, Enzyme Stability, Flavin-Adenine Dinucleotide, Models, Molecular, Molecular Sequence Data, Sequence Alignment, Thioredoxin-Disulfide Reductase,
Affiliations: *** IBB - CNR ***
Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy
Dipartimento di Scienze Farmacobiologiche, Università degli Studi Magna Graecia di Catanzaro, Roccelletta di Borgia, I-88021 Catanzaro, Italy
Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini 5, I-80131 Napoli, Italy
Dipartimento delle Scienze Biologiche, Sezione di Biostrutture, Università degli Studi di Napoli Federico II, Via Mezzocannone 16, I-80134 Napoli, Italy
CEINGE Biotecnologie Avanzate s.c.a r.l., Via Comunale Margherita 482, I-80145 Napoli, Italy
References: Bulaj, G., Formation of disulfide bonds in proteins and peptides (2005) Biotechnol. Adv., 23, pp. 87-9
Thornton, J.M., Disulphide bridges in globular proteins (1981) J. Mol. Biol., 151, pp. 261-287
Petersen, M.T., Jonson, P.H., Petersen, S.B., Amino acid neighbours and detailed conformational analysis of cysteines in proteins (1999) Protein Eng., 12, pp. 535-548
De Simone, A., Berisio, R., Zagari, A., Vitagliano, L., Limited tendency of alpha-helical residues to form disulfide bridges: a structural explanation (2006) J. Pept. Sci., 12, pp. 740-747
Kadokura, H., Katzen, F., Beckwith, J., Protein disulfide bond formation in prokaryotes (2003) Annu. Rev. Biochem., 72, pp. 111-135
Mallick, P., Boutz, D.R., Eisenberg, D., Yeates, T.O., Genomic evidence that the intracellular proteins of archaeal microbes contain disulfide bonds (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 9679-9684
Ladenstein, R., Ren, B., Reconsideration of an early dogma, saying "there is no evidence for disulfide bonds in proteins from archaea" (2008) Extremophiles, 12, pp. 29-38
Spassov, V.Z., Karshikoff, A.D., Ladenstein, R., Optimization of the electrostatic interactions in proteins of different functional and folding type (1994) Protein Sci., 3, pp. 1556-1569
Arner, E.S., Holmgren, A., Physiological functions of thioredoxin and thioredoxin reductase (2000) Eur. J. Biochem., 267, pp. 6102-6109
Carvalho, A.P., Fernandes, P.A., Ramos, M.J., Similarities and differences in the thioredoxin superfamily (2006) Prog. Biophys. Mol. Biol., 91, pp. 229-248
Argyrou, A., Blanchard, J.S., Flavoprotein disulfide reductases: advances in chemistry and function (2004) Prog. Nucleic. Acid. Res. Mol. Biol., 78, pp. 89-142
Hirt, R.P., Muller, S., Embley, T.M., Coombs, G.H., The diversity and evolution of thioredoxin reductase: new perspectives (2002) Trends Parasitol., 18, pp. 302-308
Williams, C.H., Arscott, L.D., Muller, S., Lennon, B.W., Ludwig, M.L., Wang, P.F., Veine, D.M., Schirmer, R.H., Thioredoxin reductase two modes of catalysis have evolved (2000) Eur. J. Biochem., 267, pp. 6110-6117
Grimaldi, P., Ruocco, M.R., Lanzotti, M.A., Ruggiero, A., Ruggiero, I., Arcari, P., Vitagliano, L., Masullo, M., Characterisation of the components of the thioredoxin system in the archaeon Sulfolobus solfataricus (2008) Extremophiles, 12, pp. 553-562
Masullo, M., Raimo, G., Dello Russo, A., Bocchini, V., Bannister, J.V., Purification and characterization of NADH oxidase from the archaea Sulfolobus acidocaldarius and Sulfolobus solfataricus (1996) Biotechnol. Appl. Biochem., 23 (PART 1), pp. 47-54
She, Q., Singh, R.K., Confalonieri, F., Zivanovic, Y., Allard, G., Awayez, M.J., Chan-Weiher, C.C., Van der Oost, J., The complete genome of the crenarchaeon Sulfolobus solfataricus P2 (2001) Proc. Natl. Acad. Sci. U. S. A., 98, pp. 7835-7840
Pedone, E., Limauro, D., D'Alterio, R., Rossi, M., Bartolucci, S., Characterization of a multifunctional protein disulfide oxidoreductase from Sulfolobus solfataricus (2006) FEBS J., 273, pp. 5407-5420
Arcari, P., Masullo, L., Masullo, M., Catanzano, F., Bocchini, V., A NAD(P)H oxidase isolated from the archaeon Sulfolobus solfataricus is not homologous with another NADH oxidase present in the same microorganism. Biochemical characterization of the enzyme and cloning of the encoding gene (2000) J. Biol. Chem., 275, pp. 895-900
Ruocco, M.R., Ruggiero, A., Masullo, L., Arcari, P., Masullo, M., A 35 kDa NAD(P)H oxidase previously isolated from the archaeon Sulfolobus solfataricus is instead a thioredoxin reductase (2004) Biochimie, 86, pp. 883-892
Ruggiero, A., Ruocco, M.R., Grimaldi, P., Arcari, P., Masullo, M., Zagari, A., Vitagliano, L., Crystallization and preliminary X-ray crystallographic analysis of Sulfolobus solfataricus thioredoxin reductase (2005) Acta Crystallogr., F61, pp. 906-909
Terwilliger, T.C., SOLVE and RESOLVE: automated structure solution and density modification (2003) Methods Enzymol., 374, pp. 22-37
Cowtan, K.D., Zhang, K.Y., Density modification for macromolecular phase improvement (1999) Prog. Biophys. Mol. Biol., 72, pp. 245-270
Perrakis, A., Morris, R., Lamzin, V.S., Automated protein model building combined with iterative structure refinement (1999) Nat. Struct. Biol., 6, pp. 458-463
Brunger, A.T., Version 1.2 of the crystallography and NMR system (2007) Nat. Protoc., 2, pp. 2728-2733
Schneider, T.R., Brunger, A.T., Nilges, M., Influence of internal dynamics on accuracy of protein NMR structures: derivation of realistic model distance data from a long molecular dynamics trajectory (1999) J. Mol. Biol., 285, pp. 727-740
Jones, T.A., Zou, J.Y., Cowan, S.W., Kjeldgaard, M., Improved methods for building protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr., A47, pp. 110-119
Waksman, G., Krishna, T.S., Williams Jr., C.H., Kuriyan, J., Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis (1994) J. Mol. Biol., 236, pp. 800-816
Akif, M., Suhre, K., Verma, C., Mande, S.C., Conformational flexibility of Mycobacterium tuberculosis thioredoxin reductase: crystal structure and normal-mode analysis (2005) Acta Crystallogr., D61, pp. 1603-1611
Lennon, B.W., Williams Jr., C.H., Ludwig, M.L., Crystal structure of reduced thioredoxin reductase from Escherichia coli: structural flexibility in the isoalloxazine ring of the flavin adenine dinucleotide cofactor (1999) Protein Sci., 8, pp. 2366-2379
Dai, S., Saarinen, M., Ramaswamy, S., Meyer, Y., Jacquot, J.P., Eklund, H., Crystal structure of Arabidopsis thaliana NADPH dependent thioredoxin reductase at 2.5 A resolution (1996) J. Mol. Biol., 264, pp. 1044-1057
Gustafsson, T.N., Sandalova, T., Lu, J., Holmgren, A., Schneider, G., High-resolution structures of oxidized and reduced thioredoxin reductase from Helicobacter pylori (2007) Acta Crystallogr., D63, pp. 833-843
Dym, O., Eisenberg, D., Sequence-structure analysis of FAD-containing proteins (2001) Protein Sci., 10, pp. 1712-1728
Lobley, A., Whitmore, L., Wallace, B.A., DICHROWEB: an interactive website for the analysis of protein secondary structure from circular dichroism spectra (2002) Bioinformatics, 18, pp. 211-212
Myers, J.K., Pace, C.N., Scholtz, J.M., Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding (1995) Protein Sci., 4, pp. 2138-2148
Beeby, M., O'Connor, B.D., Ryttersgaard, C., Boutz, D.R., Perry, L.J., Yeates, T.O., The genomics of disulfide bonding and protein stabilization in thermophiles (2005) PLoS Biol., 3, pp. e309
Granata, V., Graziano, G., Ruggiero, A., Raimo, G., Masullo, M., Arcari, P., Vitagliano, L., Zagari, A., Stability against temperature of Sulfolobus solfataricus elongation factor 1 alpha, a multi-domain protein (2008) Biochim. Biophys. Acta, 1784, pp. 573-581
Cambillau, C., Claverie, J.M., Structural and genomic correlates of hyperthermostability (2000) J. Biol. Chem., 275, pp. 32383-32386
Makhatadze, G.I., Loladze, V.V., Gribenko, A.V., Lopez, M.M., Mechanism of thermostabilization in a designed cold shock protein with optimized surface electrostatic interactions (2004) J. Mol. Biol., 336, pp. 929-942
Suhre, K., Claverie, J.M., Genomic correlates of hyperthermostability, an update (2003) J. Biol. Chem., 278, pp. 17198-17202
Karshikoff, A., Ladenstein, R., Ion pairs and the thermotolerance of proteins from hyperthermophiles: a "traffic rule" for hot roads (2001) Trends Biochem. Sci., 26, pp. 550-556
Thornton, J. M., Disulphide bridges in globular proteins (1981) J. Mol. Biol., 151, pp. 261-287
Petersen, M. T., Jonson, P. H., Petersen, S. B., Amino acid neighbours and detailed conformational analysis of cysteines in proteins (1999) Protein Eng., 12, pp. 535-548
Spassov, V. Z., Karshikoff, A. D., Ladenstein, R., Optimization of the electrostatic interactions in proteins of different functional and folding type (1994) Protein Sci., 3, pp. 1556-1569
Arner, E. S., Holmgren, A., Physiological functions of thioredoxin and thioredoxin reductase (2000) Eur. J. Biochem., 267, pp. 6102-6109
Carvalho, A. P., Fernandes, P. A., Ramos, M. J., Similarities and differences in the thioredoxin superfamily (2006) Prog. Biophys. Mol. Biol., 91, pp. 229-248
Hirt, R. P., Muller, S., Embley, T. M., Coombs, G. H., The diversity and evolution of thioredoxin reductase: new perspectives (2002) Trends Parasitol., 18, pp. 302-308
Williams, C. H., Arscott, L. D., Muller, S., Lennon, B. W., Ludwig, M. L., Wang, P. F., Veine, D. M., Schirmer, R. H., Thioredoxin reductase two modes of catalysis have evolved (2000) Eur. J. Biochem., 267, pp. 6110-6117
She, Q., Singh, R. K., Confalonieri, F., Zivanovic, Y., Allard, G., Awayez, M. J., Chan-Weiher, C. C., Van der Oost, J., The complete genome of the crenarchaeon Sulfolobus solfataricus P2 (2001) Proc. Natl. Acad. Sci. U. S. A., 98, pp. 7835-7840
Ruocco, M. R., Ruggiero, A., Masullo, L., Arcari, P., Masullo, M., A 35 kDa NAD (P) H oxidase previously isolated from the archaeon Sulfolobus solfataricus is instead a thioredoxin reductase (2004) Biochimie, 86, pp. 883-892
Terwilliger, T. C., SOLVE and RESOLVE: automated structure solution and density modification (2003) Methods Enzymol., 374, pp. 22-37
Cowtan, K. D., Zhang, K. Y., Density modification for macromolecular phase improvement (1999) Prog. Biophys. Mol. Biol., 72, pp. 245-270
Brunger, A. T., Version 1. 2 of the crystallography and NMR system (2007) Nat. Protoc., 2, pp. 2728-2733
Schneider, T. R., Brunger, A. T., Nilges, M., Influence of internal dynamics on accuracy of protein NMR structures: derivation of realistic model distance data from a long molecular dynamics trajectory (1999) J. Mol. Biol., 285, pp. 727-740
Jones, T. A., Zou, J. Y., Cowan, S. W., Kjeldgaard, M., Improved methods for building protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr., A47, pp. 110-119
Lennon, B. W., Williams Jr., C. H., Ludwig, M. L., Crystal structure of reduced thioredoxin reductase from Escherichia coli: structural flexibility in the isoalloxazine ring of the flavin adenine dinucleotide cofactor (1999) Protein Sci., 8, pp. 2366-2379
Gustafsson, T. N., Sandalova, T., Lu, J., Holmgren, A., Schneider, G., High-resolution structures of oxidized and reduced thioredoxin reductase from Helicobacter pylori (2007) Acta Crystallogr., D63, pp. 833-843
Myers, J. K., Pace, C. N., Scholtz, J. M., Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding (1995) Protein Sci., 4, pp. 2138-2148
Makhatadze, G. I., Loladze, V. V., Gribenko, A. V., Lopez, M. M., Mechanism of thermostabilization in a designed cold shock protein with optimized surface electrostatic interactions (2004) J. Mol. Biol., 336, pp. 929-942
Structure and stability of a thioredoxin reductase from Sulfolobus solfataricus: A thermostable protein with two functions
Recent investigations have demonstrated that disulfide bridges may play a crucial role in the stabilization of proteins in hyperthermophilic organisms. A major role in the process of disulfide formation is played by ubiquitous proteins belonging to the thioredoxin superfamily, which includes thioredoxins (Trx), thioredoxin reductases (TrxR), and disulfide oxidases/isomerases (PDO/PDI). Here we report a characterization of the structure and stability of the TrxR (SsTrxRB3) isolated from the archaeon Sulfolobus solfataricus. This protein is particularly interesting since it is able to process different substrates (Trxs and PDO) and it is endowed with an additional NADH oxidase activity. The crystal structure of the wild-type enzyme, of its complex with NADP and of the C147A mutant provides interesting clues on the enzyme function. In contrast to what is observed for class II TrxRs, in the structure of the oxidized enzyme, the FAD binding site is occupied by a partially disordered NAD molecule. In the active site of the C147A mutant, which exhibits a marginal NADH oxidase activity, the FAD is canonically bound to the enzyme. Molecular modeling indicates that a FAD molecule can be accommodated in the site of the reduced SsTrxRB3. Depending on the oxidation state, SsTrxRB3 can bind a different cofactor in its active site. This peculiar feature has been related to its dual activity. Denaturation experiments followed by circular dichroism indicate that electrostatic interactions play an important role in the stabilization of this thermostable protein. The analysis of the enzyme 3D-structure has also provided insights into the bases of SsTrxRB3 stability. (C) 2008 Elsevier B.V. All rights reserved.
Structure and stability of a thioredoxin reductase from Sulfolobus solfataricus: A thermostable protein with two functions